|Table of Contents|

[1] Ouyang Yao, Li Jun,. Some properties of monotone set functions definedby Choquet integral [J]. Journal of Southeast University (English Edition), 2003, 19 (4): 423-426. [doi:10.3969/j.issn.1003-7985.2003.04.025]
Copy

Some properties of monotone set functions definedby Choquet integral()
Choquet 积分定义的单调集函数的几个遗传性质
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 4
Page:
423-426
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2003-12-30

Info

Title:
Some properties of monotone set functions definedby Choquet integral
Choquet 积分定义的单调集函数的几个遗传性质
Author(s):
Ouyang Yao Li Jun
Department of Mathematics, Southeast University, Nanjing 210096, China
欧阳耀 李军
东南大学数学系, 南京 210096
Keywords:
non-additive measure monotone set function Choquet integral
非可加测度 单调集函数 Choquet积分
PACS:
O159
DOI:
10.3969/j.issn.1003-7985.2003.04.025
Abstract:
In this paper, some properties of the monotone set function defined by the Choquet integral are discussed. It is shown that several important structural characteristics of the original set function, such as weak null-additivity, strong order continuity, property(s)and pseudometric generating property, etc., are preserved by the new set function. It is also shown that C-integrability assumption is inevitable for the preservations of strong order continuous and pseudometric generating property.
讨论了Choquet积分定义的单调集函数的几个遗传性质.证明了Choquet积分定义的新的单调集函数遗传了原来集函数的几个重要的结构特性, 如弱零可加性、 强序连续性、性质(S)和伪距离生成性质等.最后通过2个例子说明了当被积函数不是C可积时, 强序连续性和伪距离生成性质将不再被保留.

References:

[1] Wang Z, Klir G J. Monotone set functions defined by Choquet integral [J]. Fuzzy Sets and Systems, 1996, 81(2): 241-250.
[2] Murofushi T, Sugeno M. A theory of fuzzy measures: representations, the Choquet integral and null sets [J]. J Math Anal Appl, 1991, 159: 532-549.
[3] Wang Z, Klir G J. Fuzzy measure theory [M]. New York: Plenum Press, 1992. 95-111.
[4] Pap E. Null-additive set functions [M]. Dordrecht: Kluwer Academic Publishers, 1995. 10-218.
[5] Li J. Order continuity of monotone set function and convergence of measurable functions sequence [J]. Applied Mathematics and Computation, 2003, 135(2-3): 211-218.
[6] Sun Q. Property(s)of fuzzy measure and Riesz’s theorem [J]. Fuzzy Sets and Systems, 1994, 62(1): 117-119.
[7] Li J, Yasuda M, Jiang Q, et al. Convergence of sequence of measurable functions on fuzzy measure spaces [J]. Fuzzy Sets and Systems, 1997, 87(3): 317-323.
[8] Royden H L. Real analysis [M]. New York: Macmillan Com-pany, 1966.
[9] Jiang Q, Wang S, Ziou D, et al. Pseudometric generating property and autocontinuity of fuzzy measures [J]. Fuzzy Sets and Systems, 2000, 112(2): 207-216.
[10] Zhang Q, Xu Y, Du W. Lebesgue decomposition theorem for σ-finite signed fuzzy measures [J]. Fuzzy Sets and Systems, 1999, 101(3): 445-451.

Memo

Memo:
Biographies: Ouyang Yao(1973—), male, graduate; Li Jun(corresponding author), male, doctor, professor, lijun@seu.edu.cn.
Last Update: 2003-12-20