|Table of Contents|

[1] Huang Bin, Hu Weiqun,. Finite element method of the eigenvaluesof Sturm-Liouville’s problem [J]. Journal of Southeast University (English Edition), 2003, 19 (4): 437-442. [doi:10.3969/j.issn.1003-7985.2003.04.028]
Copy

Finite element method of the eigenvaluesof Sturm-Liouville’s problem()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 4
Page:
437-442
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2003-12-30

Info

Title:
Finite element method of the eigenvaluesof Sturm-Liouville’s problem
Author(s):
Huang Bin1 Hu Weiqun2
1Department of Mechatronic Engineering, Jinling Institute of Technology, Nanjing 210038, China
2Information College, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Sturm-Liouville’s problem eigenvalue eigenfunction finite element method
PACS:
O175.1
DOI:
10.3969/j.issn.1003-7985.2003.04.028
Abstract:
This paper considers the finite element method of the approximate value of eigenvalues of Sturm-Liouville’s problem. The proof of our main result is based on the variational method. Linear interpolating functions are made by interpolation method, the problem of the approximate value of eigenvalues becomes the calculation of eigenvlaues of a matrix. Then the finite element method of the approximate value of the eigenvalues is obtained, and accuracy of(n-1)-th approximate value is estimated by n-th approximate value. When n is increased, the accuracy of eigenvalue λk is increased. When n is appropriately selected, the accuracy of λk we need is obtained. This finite element method is significant both in applications and in theory.

References:

[1] Hile G N, Protter M H. Inequalities for eigenvalue of the Laplacian [J]. Indiana Univ Math J, 1980, 29(4): 523-538.
[2] Hile G N, Yeh R Z. Inequalities for eigenvalue of the biharmonic operator [J]. Pacific J Math, 1984, 112(1): 115-133.
[3] Chen Z C, Qian C L. Estimates for discrete spectrum of Laplacian operator with any order [J]. J China Univ Sci Tech, 1990, 20(3):259-265.
[4] Protter M H. Can one hear the shape of a drum?[J]. SIAM Rev, 1987, 29(2):185-197.
[5] Zhen W G, Qian C L. Estimates for eigenvalue of Sturm-Liouville’s problem [J]. J Math Tech, 1992, 8(1):28-32.(in Chinese)
[6] Huang Bin. One computational method of the eigenvalues of the horizontal across vibration problem of beam [J]. Journal of Southeast University(English Edition), 2002, 18(4):277-282.

Memo

Memo:
Biography: Huang Bin(1958—), male, lecturer, binhuang@public1.ptt.js.cn.
Last Update: 2003-12-20