|Table of Contents|

[1] Ma Haoquan, Hu Dejin, Zhang Kai,. Micro-displacement amplifying mechanismdriven by piezoelectric actuator [J]. Journal of Southeast University (English Edition), 2004, 20 (1): 75-79. [doi:10.3969/j.issn.1003-7985.2004.01.016]
Copy

Micro-displacement amplifying mechanismdriven by piezoelectric actuator()
基于压电陶瓷驱动的微位移放大机构
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 1
Page:
75-79
Research Field:
Mechanical Engineering
Publishing date:
2004-03-30

Info

Title:
Micro-displacement amplifying mechanismdriven by piezoelectric actuator
基于压电陶瓷驱动的微位移放大机构
Author(s):
Ma Haoquan Hu Dejin Zhang Kai
School of Mechanical and Dynamic Engineering, Shanghai Jiaotong University, Shanghai 200030, China
马浩全 胡德金 张凯
上海交通大学机械与动力工程学院, 上海 200030
Keywords:
piezoelectric actuator flexure hinge micro displacement amplifying structure
压电陶瓷驱动器 柔性铰链 微位移 放大机构
PACS:
TH134
DOI:
10.3969/j.issn.1003-7985.2004.01.016
Abstract:
Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It’s proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.
压电陶瓷驱动器具有刚性好、频响高和控制精度高的特点, 但是其输出位移却较小, 通常是其长度的1/1 000.在非圆回转曲面精密车削中, 为了实现刀具大位移、高频响、高精度的进给要求, 提出了新型单自由度柔性铰链机构对压电陶瓷驱动器的输出位移进行放大.同时对机构进行了静态和动态特性理论分析, 提出了机构静态和动态计算解析式, 并用有限元方法对机构动态和静态特性进行了验证.实验证明机构的最大输出位移为293 μm, 谐振频率为312 Hz.

References:

[1] Zhou Huixing, Zhang Linna, Wang Xiankui, et al. Repetitive control and application to linear servo unit for CNC machining of elliptical pistons [A]. In: Proceeding of the IEEE International Conference on Industrial Technology [C]. 1994. 630-633.
[2] Alter D M, Tsao Tsu-Chin. Implementation of a direct drive linear motor actuator for dynamic control of the turning process [A]. In: Proceedings of the 1993 American Control Conference Part [C]. 1993. 1971-1975.
[3] Toshiro Higuchi, Tomoni Yamaguchi. Development of a high speed noncircular machining NC lathe for cutting a piston head of a reciprocating engine by use of a new servomechanism actuated by electromagnetic attractive force [J]. Journal of the Japan Society for Precision Engineering, 1996, 62(3): 453-457.
[4] Tsao Tsu-Chin, Tomizuka Masayoshi. Robust adaptive and repetitive digital tracking control and application to a hydraulic servo for noncircular machining [J]. Transactions of the ASME, 1994, 116(3): 24-32.
[5] Reddy Rohit G, DeVor Richard E, Kapoor Shiv G, et al. A mechanistic model-based force-feedback scheme for voice-coil actuated radial contour turning [J]. International Journal of Machine Tools and Manufacture, 2001, 41(8): 1131-1147.
[6] Kazuhiko Sugita, Yoichi Yamakawa, Norio Sakaibara. Development of a noncircular high speed generating mechanism by hybrid system with VCM and PZT [J]. Journal of the Japan Society for Precision Engineering, 1992, 58(9): 1503-1508.
[7] Pahk Heui Jae, Lee Dong Sung, Park Jong Ho. Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation [J]. International Journal of Machine Tools and Manufacture, 2001, 41(1): 51-63.
[8] Kim Byung-Sub. Control of multiple degree of freedom fast tool stages for noncircular turning progress [D]. University of Illinois, 2001.
[9] Ryu Jae W, Gweon Dae-Gab, Moon Kee S. Optimal design of a flexure hinge based xyθ wafer stage [J]. Precision Engineering, 1997, 21(1): 18-28.
[10] Liu Pinkuan, Sun Lining, Qu Dongsheng, et al. Dynamic analysis on a novel nanopositioning stage driven by PZT [J]. Optic and Precision Engineering, 2002, 10(2): 143-147.(in Chinese)
[11] Paros J M, Weisbord L. How to design flexure hinges [J]. Machine Design, 1965, 37(27): 151-157.
[12] Pilkey W D. Peterson’s stress concentration factors [M]. New York: John Wiley and Sons, 1997.

Memo

Memo:
Biographies: Ma Haoquan(1971—), male, graduate; Hu Dejin(corresponding author), male, professor, djhu@sjtu.edu.cn.
Last Update: 2004-03-20