[1] Hitchcock F L. The distribution of a product from several sources to numerous localities [J]. Journal of Mathematical Physics, 1941, 20(1): 224-230.
[2] Aneja Y P, Nair K P K. Bicriteria transportation problems [J]. Management Science, 1979, 25(1): 73-88.
[3] Lee S M, Moore L J. Optimizing transportation problems with multiple objectives [J]. AIEE Transactional, 1973, 5(2): 333-338.
[4] Ringuest J L, Rinks D B. Interactive solutions for the linear multiobjective transportation problem [J]. European Journal of Operations Research, 1987, 32(1): 96-106.
[5] Current J, Min H. Multi-objective design of trans ̄portation networks: taxonomy and annotation [J]. European Journal of Operations Research, 1986, 26(1): 187-201.
[6] Haley K B. The existence of a solution to the multi index problem [J]. Oper Res Quart, 1965, 16(4): 471-474.
[7] Zadeh L A. Fuzzy sets [J]. Information Control, 1965, 8(3): 338-353.
[8] Bit A K, Biswal M P, Alam S S. Fuzzy programming approach to multicriteria decision making transportation problem [J]. Fuzzy Sets and Systems, 1992, 50(1): 35-41.
[9] Bit A K, Biswal M P, Alam S S. Fuzzy programming approach to multiobjective solid transportation problem [J]. Fuzzy Sets and Systems, 1993, 57(2): 183-194.
[10] Zimmermann H J.Fuzzy set theory and its appli ̄cations [M]. Boston: Kluwer Academic Publishers, 1996.
[11] Bit A K, Biswal M P, Alam S S. An additive fuzzy progra ̄mming model for multiobjective trans ̄port ̄ation problem [J]. Fuzzy Sets and Systems, 1993, 57(3): 313-319.
[12] Luhandjula M K. Compensatory operators in fuzzy linear programming with multiple objectives [J]. Fuzzy Sets and Systems, 1982, 8(2): 245-252.
[13] Yager R R. Competitiveness and compensation in decision making [R]. New York: New Rochelle, 1978.
[14] Lee E S, Li R J. Fuzzy multiple objective programming and compromise programming with Pareto optimum [J]. Fuzzy Sets and Systems, 1993, 53(2): 275-288.