|Table of Contents|

[1] Zhu Yanjuan, Zhang Liyan, Zhou Laishui,. Contour extraction and curvature calculationfor fragment reassembly [J]. Journal of Southeast University (English Edition), 2004, 20 (2): 181-186. [doi:10.3969/j.issn.1003-7985.2004.02.011]
Copy

Contour extraction and curvature calculationfor fragment reassembly()
碎片拼合的轮廓提取和曲率计算
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 2
Page:
181-186
Research Field:
Computer Science and Engineering
Publishing date:
2004-06-30

Info

Title:
Contour extraction and curvature calculationfor fragment reassembly
碎片拼合的轮廓提取和曲率计算
Author(s):
Zhu Yanjuan Zhang Liyan Zhou Laishui
Research Center of CAD/CAM Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
朱延娟 张丽艳 周来水
南京航空航天大学CAD/CAM工程研究中心, 南京 210016
Keywords:
contour extraction curvature calculation convolution integral discrete points
轮廓提取 曲率计算 卷积积分 离散点
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2004.02.011
Abstract:
The Canny edge detector inevitably misses some important and obvious edges during contour extraction, which causes gaps in the contour. We propose a geometric method to locate, measure and fill the gaps precisely. With the complete contour information, we present a convolution approach, which utilizes an appropriate linear interpolation to resample the contour to calculate pointwise curvature. This approach distributes discrete points within a convolution window uniformly. It ensures a one-to-one correspondence between every point and its weight, thus the accuracy is guaranteed under this condition. A related parameter selection is also suggested. Experimental results show that the proposed methods are robust and accurate.
Canny算子在对物体进行轮廓提取时, 会不可避免地漏检一些明显的边界, 导致轮廓的不连续. 提出了一种几何方法来定位、度量轮廓上的间断点, 然后将其准确地填充起来. 在获得轮廓的完整信息后, 文中提出采用卷积积分的方法, 通过线性插值对轮廓进行重采样来计算各离散点曲率. 该方法保证了卷积窗口内离散点分布得均匀、一致, 并且使得每一离散点与其权重都满足一一对应关系, 从而保证了曲率计算的精确性. 同时给出了相关参数的选择方法. 实验结果表明, 算法是准确和稳定可靠的.

References:

[1] Leitão H C G, Stolfi J. A multi-scale method for the re-assembly of fragmented objects [A]. In: Proc British Machine Vision Conference [C]. Bristol, 2000, 2: 705-714.
[2] Leitão H C G, Stolfi J. A multi-scale method for the reassembly of two-dimensional fragmented objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1239-1251.
[3] Kong Weixin, Kimia B B. On solving 2-D and 3-D puzzles using curve matching [A]. In: Proc of the IEEE Conference on Computer Vision and Pattern Recognition [C]. Hawaii, 2001. 583-590.
[4] Medioni G, Yasumoto Y. Corner detection and curve representation using cubic B-splines [J]. Computer Vision, Graphics and Image Processing, 1987, 39(3): 267-278.
[5] Liu H C, Srinath M D. Corner detection from chain ̄code[J]. Pattern Recognition, 1990, 23(1): 51-68.
[6] Vialard A. Geometrical parameters extraction from discrete paths[A]. In: Miguet S, Montanvert A, Ub′eda S, eds. 6th International Conference on Discrete Geometry for Computer Imagery [C]. Lyon, 1996, 1176: 24-35.
[7] Wolfson H J. On curve matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 483-489.
[8] Chetverikov D, SzabóZ. A simple and efficient algorithm for detection of high curvature points in planar curves [A]. In: Proceedings of the 23rd Workshop of the Austrian Pattern Recognition Group [C]. Steyr, 1999. 175-184.
[9] Boyer K L, Sarkar S. Comments on the localization performance measure and optimal edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(1): 106-108.
[10] Ding Lijun, Goshtasby A. On the Canny edge detector [J]. Pattern Recognition, 2001, 34(3): 721-725.
[11] Pan Wenjie. Fourier analysis and application [M]. Beijing: Peking University Press, 2000.(in Chinese)
[12] Shi Fazhong. Computer aided geometric design & non-uniform rational B-spline [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 1994. 17-25.(in Chinese)
[13] Mokhtarian F, Mackworth A K. A theory of multiscale, curvature-based shape representation for planar curves [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(8): 789-805.

Memo

Memo:
Biographies: Zhu Yanjuan(1970—), female, graduate; Zhang Liyan(corresponding author), female, doctor, professor, zhangly@nuaa.edu.cn.
Last Update: 2004-06-20