|Table of Contents|

[1] Zhu Shunrong,. Fixed points on complete metric spaces [J]. Journal of Southeast University (English Edition), 2004, 20 (2): 256-260. [doi:10.3969/j.issn.1003-7985.2004.02.027]
Copy

Fixed points on complete metric spaces()
完备度量空间中的不动点
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 2
Page:
256-260
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2004-06-30

Info

Title:
Fixed points on complete metric spaces
完备度量空间中的不动点
Author(s):
Zhu Shunrong
Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China
朱顺荣
南京理工大学应用数学系, 南京 210094
Keywords:
fixed point complete metric space w-distance
不动点 完备度量空间 w-距离
PACS:
O174.12
DOI:
10.3969/j.issn.1003-7985.2004.02.027
Abstract:
Two new fixed point theorems on two complete metric spaces are proved by using the concept of w-distance. One of the results is: let (X, d) and (Y, ρ) be two complete metric spaces, let p1 be a w-distance on X and p2 be a w-distance on Y. If T is a continuous mapping of X into Y and S is a mapping of Y into X, satisfying the inequalities: p1(STx, STx′)≤cmax{p1(x, x′), p1(x, STx), p1(x′, STx′), p1(x, STx′)/2, p2(Tx, Tx′)} and p2(TSy, TSy′)≤cmax{p2(y, y′), p2(y, TSy), p2(y′, TSy′), p2(y, TSy′)/2, p1(Sy, Sy′)} for all x, x′ in X and y, y′ in Y, where 0≤c<1. We have proved that ST has a unique fixed point z in X and TS has a unique fixed point w in Y. The two theorems have improved the fixed point theorems of Fisher and Namdeo, et al.
使用w-距离概念, 证明了在2个完备度量空间中2个新的不动点定理, 其中之一的结果为: 设(X, d)和(Y, ρ)是2个完备度量空间, 设p1是X上w-距离和p2是Y上w-距离. 如果T是一个从X到Y的连续映射和S是一个从Y到X的映射, 对X中所有x, x′ 和Y中所有y, y′以及o<c<1, 满足不等式p1(STx, STx′)≤cmax{p1(x, x′), p1(x, STx), p1(x′, STx′), p1(x, STx′)/2, p2(Tx, Tx′)}和p2(TSy, TSy′)≤cmax{p2(y, y′), p2(y, TSy), p2(y′, TSy′), p2(y, TSy′)/2, p1(Sy, Sy′)}. 证明了ST在X中有惟一不动点z和TS在Y中有惟一不动点w. 这2个定理推广了 Fisher和Namdeo等人的不动点定理.

References:

[1] Jeong S U. Note fixed point theorems related to C′iric′s contraction principle [J]. J Math Anal Appl, 1998, 225(2): 630-640.
[2] Kada O, Suzuki T, Takahashi W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces [J]. Math Japonica, 1996, 44(2): 381-391.
[3] Fisher B. Related fixed points on two metric spaces [J]. Math Sem Notes Kobe Univ, 1982, 10(1): 17-26.
[4] Namdeo R K, Tiwari N K, Fisher B, et al. Related fixed point theorems on two complete and compact metric spaces [J]. Int J Math Sci, 1998, 21(3): 559-563.
[5] Jungck G. Commuting mappings and fixed points [J]. Amer Math Monthly, 1976, 83(4): 261-263.

Memo

Memo:
Biography: Zhu Shunrong(1946—), male, professor, zhushr@mail. njust. edu. cn.
Last Update: 2004-06-20