|Table of Contents|

[1] Liu Xinwang,. Three methods for generating monotonic OWA operator weightswith given orness level [J]. Journal of Southeast University (English Edition), 2004, 20 (3): 369-373. [doi:10.3969/j.issn.1003-7985.2004.03.021]
Copy

Three methods for generating monotonic OWA operator weightswith given orness level()
给定orness 水平下 生成单调OWA权值序列的3种方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 3
Page:
369-373
Research Field:
Economy and Management
Publishing date:
2004-09-30

Info

Title:
Three methods for generating monotonic OWA operator weightswith given orness level
给定orness 水平下 生成单调OWA权值序列的3种方法
Author(s):
Liu Xinwang
College of Economics and Management, Southeast University, Nanjing 210096, China
刘新旺
东南大学经济管理学院, 南京 210096
Keywords:
ordered weighted averaging operator orness measure fuzzy quantifier
OWA 算子 orness 测度 模糊量化算子
PACS:
TU431
DOI:
10.3969/j.issn.1003-7985.2004.03.021
Abstract:
Based on the properties of ordered weighted averaging(OWA)operator and regular increasing monotone(RIM)quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the methods proposed in this paper are more intuitive and efficient in computation. And as there are more than one solution in most cases, the decision maker can set some initial condition and chooses the appropriate solution in the real decision process, which increases the flexibility of decision making to some extent. All these three OWA methods for generating weights are illustrated by numerical examples.
基于OWA算子和RIM模糊量化算子的性质, 提出了在给定orness水平的情况下, 生成单调OWA算子权值序列的3种方法, 分别是等比OWA算子、等差OWA算子和基于修正的模糊量化算子的权值生成方法. 与现有的大多数方法相比, 该系列方法符合直觉且计算简单. 该系列方法还可以使决策者给出一定的初始条件, 而得到其所期望形式的OWA权值序列, 在一定程度上增加了决策的灵活性. 每种方法都给出了具体算例以表明其有效性和合理性.

References:

[1] Yager R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Systems, Man and Cybernetics, 1988, 18(1): 183-190.
[2] Yager R R. On the analytic representation of the Leximin ordering and its application to flexible constraint propagation [J]. European Journal of Operational Research, 1997, 102(1): 176-192.
[3] Carbonell M, Mas M, Mayor G. On a class of monotonic extended OWA operators[A]. In: The Sixth IEEE International Conference on Fuzzy Systems [C]. Barcelona, 1997. 1695-1700.
[4] Yager R R. Quantifier guided aggregation using OWA operators [J]. International Journal of Intelligent Systems, 1996, 11(1): 49-73.
[5] Yager R R. Families of OWA operators [J]. Fuzzy Sets and Systems, 1993, 59(1): 125-143.
[6] Filev D, Yager R R. On the issue of obtaining OWA operator weights[J]. Fuzzy Sets and Systems, 1998, 94(2): 157-169.
[7] Yager R R, Filev D P. Induced ordered weighted averaging operators [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1999, 29(2): 141-150.
[8] Xu Z S, Da Q L. Approaches to obtaining the weights of the ordered weighted aggregation operators[J]. Journal of Southeast University(Natural Science Edition), 2003, 33(1): 94-96.(in Chinese)
[9] O’Hagan M. Aggregating template or rule antecedents in real-time expert systems with fuzzy set[A]. In: Proc 22nd Annu IEEE Asilomar Conf on Signals, Systems, Computers [C]. California, 1988. 681-689.
[10] Filev D, Yager R R. Analytic properties of maximum entropy OWA operators[J]. Information Sciences, 1995, 85(1): 11-27.
[11] Fullér R, Majlender P. An analytic approach for obtaining maximal entropy OWA operator weights[J]. Fuzzy Sets and Systems, 2001, 124(1): 53-57.
[12] Liu X W, Chen L H. On the properties of parametric geometric OWA operator[J]. International Journal of Approximate Reasoning, 2004, 35(2): 163-178.
[13] Herrera-Viedma E, Cordon O, Luque M, et al. A model of fuzzy linguistic IRS based on multi-granular linguistic information [J]. International Journal of Approximate Reasoning, 2003, 34(2): 221-239.
[14] Yager R R. On the valuation of alternatives for decision-making under uncertainty [J]. International Journal of Intelligent Systems, 2002, 17(5): 687-707.
[15] Herrera F, Herrera-Viedma E. Aggregation operators for linguistic weighted information [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 1997, 22(5): 646-656.
[16] Yager R R, Kacprzyk J. The ordered weighted averaging operators — theory and applications [M]. Kluwer Academic Publishers, 1997.

Memo

Memo:
Biography: Liu Xinwang(1968—), male, doctor, associate professor, xwliu@seu.edu.cn.
Last Update: 2004-09-20