|Table of Contents|

[1] Yu Haitao,. Surface edge element method for 3-D electromagnetic computation [J]. Journal of Southeast University (English Edition), 2005, 21 (2): 170-174. [doi:10.3969/j.issn.1003-7985.2005.02.011]
Copy

Surface edge element method for 3-D electromagnetic computation()
表面棱边单元法求解三维电磁场问题
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
21
Issue:
2005 2
Page:
170-174
Research Field:
Electrical Engineering
Publishing date:
2005-06-30

Info

Title:
Surface edge element method for 3-D electromagnetic computation
表面棱边单元法求解三维电磁场问题
Author(s):
Yu Haitao
Department of Electrical Engineering, Southeast University, Nanjing 210096, China
余海涛
东南大学电气工程系, 南京 210096
Keywords:
surface edge element method method of moment combined field integral equations scattering field
表面棱边单元法 矩量法 复合场积分方程 散色场
PACS:
TM154
DOI:
10.3969/j.issn.1003-7985.2005.02.011
Abstract:
A surface edge element method is proposed and implemented in the study of electromagnetic scattering fields of general targets.The basis functions for surfaces of arbitrary shape are derived according to the geometrical properties of each triangular patch.The proposed basis functions are 3-D linear functions and the tangential components of the vectors are continuous as the traditional edge element method.Combined field integral equations(CFIE)that include both electrical field and magnetic field integral equations are used to model the electromagnetic scattering of general dielectric targets.Special treatment for singularity is presented to enhance the quality of numerical solutions.The proposed method is used to compute the scattering fields from various targets.Numerical results obtained by the proposed method are validated by results from other numerical methods.
提出了表面棱边单元方法并应用它求解任意形状物体的三维电磁场散色问题.首先根据物体剖分得出表面区域的几何特性, 推导出表面棱边单元法的基本公式.该方法保持了普通棱边单元法的基本特性, 维持变量的切向分量连续.然后用复合积分方程来模拟普通介质的电磁场散色问题, 应用所提出的方法离散积分方程, 并且对奇点问题采用特殊的处理方法.最后用该方法计算圆柱体以及四方体的在不同介质条件下的电磁场散色问题, 对所得的数值解进行测试, 并与其他数值方法解相比较, 结果表明该方法行之有效.

References:

[1] Rao S M, Wilton D R, Glisson A W.Electromagnetic scattering by surfaces of arbitrary shape [J].IEEE Transactions on Antennas and Propagation, 1982, 30(3):409-418.
[2] Bunger R, Beyer R, Arndt F.Rigorous combined mode-matching integral equation analysis of horn antennas with arbitrary cross section [J].IEEE Transactions on Antennas and Propagation, 1999, 47(2):1641-1648.
[3] Liu Zhijun, Chew Weng Cho, Michielssen E.Numerical modeling of dielectric-resonator antennas in a complex environment using the method of moments [J].IEEE Transactions on Antennas and Propagation, 2002, 50(1):1-20.
[4] Sheng X Q, Jin J M, Song J M.On the formulation of hybrid finite-element and boundary integral methods for 3-D scattering [J].IEEE Transactions on Antennas and Propagation, 1998, 46(3):303-311.
[5] Zhang Yunhua, Cui Tiejun, Chew Weng Cho, et al.Magnetic field integral equation at very low frequencies [J].IEEE Transactions on Antennas and Propagation, 2003, 51(8):1864-1871.
[6] Sarkar T K, Lee Wonwoo, Rao S M.Analysis of transient scattering from composite arbitrarily shaped complex structures [J].IEEE Transactions on Antennas and Propagation, 2000, 48(10):1625-1634.
[7] Nedelec J C.Mixed finite element in R3 [J].Numer Math, 1980, 35(2):315-341.
[8] Bossavit A.A rational for edge elements in 3-D field computations [J].IEEE Transactions on Magnetics, 1988, 24(1):74-79.
[9] Ahn C H, Jeong B S, Lee S Y.Efficient vectorial hybrid FE-BE method for electromagnetic scattering problem [J].IEEE Transactions on Magnetics, 1994, 30(5):3136-3139.
[10] Wakao S, Onuki T.Electromagnetic field computations by the hybrid FE-BE method using edge elements [J].IEEE Transactions on Magnetics, 1993, 28(2):1487-1490.
[11] Webb J P.Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements [J].IEEE Transactions on Antennas and Propagation, 1999, 47(8):1244-1253.

Memo

Memo:
Biography: Yu Haitao(1965—), male, doctor, professor, htyu@seu.edu.cn.
Last Update: 2005-06-20