|Table of Contents|

[1] Shen Ruiling, Han Zhengzhong,. New sufficient conditions for general linear SISOTakagi-Sugeno fuzzy systems as universal approximators [J]. Journal of Southeast University (English Edition), 2005, 21 (3): 375-378. [doi:10.3969/j.issn.1003-7985.2005.03.025]
Copy

New sufficient conditions for general linear SISOTakagi-Sugeno fuzzy systems as universal approximators()
线性SISO TS模糊系统万能逼近的一种新的充分条件
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
21
Issue:
2005 3
Page:
375-378
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2005-09-30

Info

Title:
New sufficient conditions for general linear SISOTakagi-Sugeno fuzzy systems as universal approximators
线性SISO TS模糊系统万能逼近的一种新的充分条件
Author(s):
Shen Ruiling Han Zhengzhong
Department of Mathematics, Southeast University, Nanjing 210096, China
申瑞玲 韩正忠
东南大学数学系, 南京 210096
Keywords:
Takagi-Sugeno(TS)fuzzy system universal approximator sufficient condition
Takagi-Sugeno(TS)模糊系统 万能逼近 充分条件
PACS:
O159
DOI:
10.3969/j.issn.1003-7985.2005.03.025
Abstract:
By the best approximation theory, it is first proved that the SISO(single-input single-output)linear Takagi-Sugeno(TS)fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass approximation theorem, can uniformly approximate any continuous functions on the compact domain. Then new sufficient conditions for general linear SISO TS fuzzy systems as universal approximators are obtained. Formulae are derived to calculate the number of input fuzzy sets to satisfy the given approximation accuracy. Then the presented result is compared with the existing literature’s results. The comparison shows that the presented result needs less input fuzzy sets, which can simplify the design of the fuzzy system, and examples are given to show its effectiveness.
借助于最优逼近理论, 证明了线性SISO TS模糊系统可以逼近任意一个多项式, 然后以Weierstrass逼近定理为桥梁, 证明了该模糊系统可以以任意精度逼近一个任意的连续函数, 从而得到了该模糊系统万能逼近性的一个新的充分条件. 并在证明过程中, 得到了要达到所要求的逼近精度所需的输入模糊集的下确界. 然后从理论上将所得的结果与现有文献中的结果进行了比较, 证明了该结果所需的输入模糊集的数目要少得多, 从而可以简化模糊系统的设计. 最后举例证明了该结论的有效性.

References:

[1] Kosko B. Fuzzy system as universal approximators [A]. In: Proc IEEE Int Conf Fuzzy Syst [C]. San Diego, CA, 1992. 1153-1162.
[2] Wang L X. Fuzzy systems are universal approximators [A]. In: Proc IEEE Int Conf Fuzzy Syst [C]. San Diego, CA, 1992. 1163-1170.
[3] Wang L X, Mandel J M. Fuzzy basis functions, universal approximation, and orthogonal least-square learning [J]. IEEE Trans on Neural Network, 1992, 3(5): 807-814.
[4] Zeng X J, Singh M G. Approximation theory of fuzzy systems—SISO case [J]. IEEE Trans on Fuzzy Syst, 1994, 2(2): 162-176.
[5] Zeng X J, Singh M G. Approximation theory of fuzzy systems—MIMO case [J]. IEEE Trans on Fuzzy Syst, 1995, 3(2): 219-235.
[6] Ying H. Sufficient conditions on general fuzzy systems as function approximators [J]. Automatica, 1994, 30(3): 521-525.
[7] Ying H. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators [J]. IEEE Trans on Fuzzy Syst, 1998, 6(4): 582-587.
[8] Zeng K, Hang N Y, Xu W L. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators [J]. IEEE Trans on Fuzzy Syst, 2000, 8(6): 773-780.
[9] Kincaid David, Cheney Ward. Numerical analysis: mathematics of scientific computing. 3rd ed [M]. Beijing: China Machine Press, 2003.405-419.
[10] Filev D P, Yager R R. A generalized defuzzification method via BAD distributions [J]. Int J Intell Syst, 1991, 6(7): 687-697.

Memo

Memo:
Biographies: Shen Ruiling(1981—), female, graduate;Han Zhengzhong(corresponding author), male, professor, hanzz65@sohu.com.
Last Update: 2005-09-20