|Table of Contents|

[1] Chen Bin,. Auto-Bäcklund transformation and exact solutionsof Wick-type stochastic Burgers equation [J]. Journal of Southeast University (English Edition), 2005, 21 (4): 513-516. [doi:10.3969/j.issn.1003-7985.2005.04.028]
Copy

Auto-Bäcklund transformation and exact solutionsof Wick-type stochastic Burgers equation()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
21
Issue:
2005 4
Page:
513-516
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2005-12-30

Info

Title:
Auto-Bäcklund transformation and exact solutionsof Wick-type stochastic Burgers equation
Author(s):
Chen Bin
Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, China
Keywords:
Wick-type stochastic Burgers equation auto-Bä cklund transformation stochastic soliton solution white noise Hermite transform homogeneous balance principle
PACS:
O211.6;O175.2
DOI:
10.3969/j.issn.1003-7985.2005.04.028
Abstract:
Burgers equation in random environment is studied.In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=(·overB)t, where Bt is a Brown motion.The auto-Bäcklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform.The generalization of the Wick-type stochastic Burgers equation is also studied.

References:

[1] Konotop V V, Vázquez L.Nonlinear random waves[M].London:World Scientific, 1994. 39-66;105-120.
[2] Chen B, Xie Y C.Exact solutions for generalized stochastic Wick-type KdV-mKdV equations[J].Chaos, Solitons & Fractals, 2004, 23(1):243-248.
[3] Chen B, Xie Y C.An auto-Backlund transformation and exact solutions of stochastic Wick-type Sawada-Kotera equations[J].Chaos, Solitons & Fractals, 2004, 23(1):281-287.
[4] Chen B, Xie Y C.Exact solutions for Wick-type stochastic coupled Kadomtsev-Petviashvili equations[J].J Phys A:Math Gen, 2005, 38(4):815-822.
[5] Morien P L.On the density for the solution of a Burgers-type SPDE[J].Ann Inst Henri Poincaré, Probabilités et Statistiques, 1999, 35(4):459-482.
[6] Xie Y C.Exact solutions for stochastic KdV equations[J].Phys Lett A, 2003, 310(2, 3):161-167.
[7] Xie Y C.Exact solutions for stochastic mKdV equations[J].Chaos, Solitons Fractals, 2004, 19(3):509-513.
[8] Xie Y C.Positonic solutions for Wick-type stochastic KdV equations[J].Chaos, Solitons & Fractals, 2004, 20(2):337-342.
[9] Xie Y C.Exact solutions of the Wick-type stochastic Kadomtsev-Petviashvili equations[J].Chaos, Solitons & Fractals, 2004, 21(2):473-480.
[10] Xie Y C.An auto-Backlund transformation and exact solutions for Wick-type stochastic generalized KdV equations[J].J Phys A:Math Gen, 2004, 37(19):5229-5236.
[11] Xie Y C.Exact solutions for Wick-type stochastic coupled KdV equations[J].Phys Lett A, 2004, 327(2, 3):174-179.
[12] Holden H, Øksendal B, UbØe J, et al.Stochastic partial differential equations:a modeling, white noise functional approach[M].Boston:Birhkäuser, 1996. 141-187.
[13] Wang M L.Exact solutions for a compound KdV-Burgers equation[J].Phys Lett A, 1996, 213(5, 6):279-287.

Memo

Memo:
Biography: Chen Bin(1965—), female, master, associate professor, bchen@xznu.edu.cn.
Last Update: 2005-12-20