|Table of Contents|

[1] Li Jun, Liu Junhua,. Identification of dynamic systemsusing support vector regression neural networks [J]. Journal of Southeast University (English Edition), 2006, 22 (2): 228-233. [doi:10.3969/j.issn.1003-7985.2006.02.018]
Copy

Identification of dynamic systemsusing support vector regression neural networks()
基于支持向量回归神经网络的动态系统辨识
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
22
Issue:
2006 2
Page:
228-233
Research Field:
Automation
Publishing date:
2006-06-30

Info

Title:
Identification of dynamic systemsusing support vector regression neural networks
基于支持向量回归神经网络的动态系统辨识
Author(s):
Li Jun Liu Junhua
School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
李军 刘君华
西安交通大学电气工程学院, 西安 710049
Keywords:
support vector regression neural network system identification robust learning algorithm adaptabi-lity
支持向量回归 神经网络 系统辨识 鲁棒学习算法 自适应性
PACS:
TP183
DOI:
10.3969/j.issn.1003-7985.2006.02.018
Abstract:
A novel adaptive support vector regression neural network(SVR-NN)is proposed, which combines respectively merits of support vector machines and a neural network.First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors.Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN.To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems.Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.
结合支持向量机和神经网络各自的优点, 提出了一种新颖的自适应支持向量回归神经网络(SVR-NN).首先, 利用支持向量回归方法确定SVR-NN的初始结构和初始化权值, 基于支持向量自适应地构造SVR-NN神经网络的隐层节点;然后, 使用退火过程的鲁棒学习算法更新网络节点参数和权值.为了验证所提出方法的有效性, 给出了自适应SVR-NN应用于非线性动态系统辨识的实例.仿真结果表明, 与以前的神经网络方法相比, 基于SVR-NN网络的辨识方案能获得相当好的性能, 它具有很快的收敛速度.因此, 自适应的SVR-NN为非线性系统辨识提供了极有吸引力的新途径.

References:

[1] Lin C T, Lee C S G.Neural fuzzy system[M].New Jersey:Prentice-Hall, 1996.
[2] Vapnik V N. The nature of statistical learning theory. 2rd ed[M].New York:Springer-Verlag, 1999.
[3] Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining Knowledge Discovery, 1998, 2(2):1-43.
[4] Poggio T, Rifkin R, Mukherjee S, et al.General conditions for predictivity in learning theory[J].Nature, 2004, 428:419-422.
[5] Keerthi S S.Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J].IEEE Trans on Neural Networks, 2002, 13(5):1225-1229.
[6] Chuang C C, Su S F, Hsiao C C.The annealing robust backprogagation(ARBP)learning algorithms[J].IEEE Trans on Neural Networks, 2000, 11(5):1067-1077.
[7] Chuang C C, Su S F.Robust support vector regression networks for function approximation with outliers[J].IEEE Trans on Neural Networks, 2002, 13(6):1322-1330.
[8] Chan W C, Chan C W, Cheung K C, et al.On the modeling of nonlinear dynamic systems using support vector neural networks[J].Engineering and Applications of AI, 2001, 14(2):105-114.
[9] Schölkopf B, Smola A J, Williamson R C, et al.New support vector algorithms[J].Neural Computation, 2000, 12(5):1207-1245.
[10] Smola A J, Schölkopf B, Müller K R.The connection between regularization operators and support vector kernels[J].Neural Networks, 1998, 11(4):637-649.
[11] Vapnik V N, Chapelle O. Bounds on error expectation for support vector machines [J].Neural Computation, 2000, 12(9):2013-2036.
[12] Schölkopf B, Sung K K, Burges C J.Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J].IEEE Trans on Signal Processing, 1997, 45(11):2758-2765.
[13] Narendra K S, Parthasarathy K.Identification and control of dynamical systems using neural networks[J].IEEE Trans on Neural Networks, 1990, 1(1):4-27.
[14] Box G E P, Jenkins G M.Time series analysis:forcasting and control. 2rd ed[M].San Francisco:Holden-Day, 1976.
[15] Liang W, Langari R.Complex system modeling via fuzzy logic[J].IEEE Trans Syst, Man and Cybern, Part B, 1996, 26(1):100-106.

Memo

Memo:
Biographies: Li Jun(1969—), male, graduate, lijun691201@yahoo.com.cn;Liu Junhua(1938—), female, professor, Junhliu@mail.xjtu.edu.cn.
Last Update: 2006-06-20