|Table of Contents|

[1] Tang Lu, , Zhang Yongguang, et al. Structures of semantic networks:how do we learn semantic knowledge [J]. Journal of Southeast University (English Edition), 2006, 22 (3): 413-417. [doi:10.3969/j.issn.1003-7985.2006.03.026]
Copy

Structures of semantic networks:how do we learn semantic knowledge()
语义网络的结构:我们怎样学习语义知识
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
22
Issue:
2006 3
Page:
413-417
Research Field:
Automation
Publishing date:
2006-09-30

Info

Title:
Structures of semantic networks:how do we learn semantic knowledge
语义网络的结构:我们怎样学习语义知识
Author(s):
Tang Lu1, 2, 4, Zhang Yongguang1, Fu Xue1, 2, 3
1Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
2Graduate School, Chinese Academy of Sciences, Beijing 100080, China
3School of Banking and Public Finance, Jiangxi University of Finance, Nanchang 330013, China
4Bussiness School, University of Shanghai for Science and Technology, Shanghai 200093, China
唐璐1, 2, 4, 张永光1, 付雪1, 2, 3
1中国科学院数学与系统科学研究院, 北京 100080; 2中国科学院研究生院, 北京 100080; 3江西财经大学公共管理学院, 南昌 330013; 4上海理工大学管理学院, 上海 200093
Keywords:
semantic networks complex networks small-world scale-free hierarchical organization
语义网络 复杂网络 小世界 无尺度 层次结构
PACS:
TP182
DOI:
10.3969/j.issn.1003-7985.2006.03.026
Abstract:
Global semantic structures of two large semantic networks, HowNet and WordNet, are analyzed.It is found that they are both complex networks with features of small-world and scale-free, but with special properties.Exponents of power law degree distribution of these two networks are between 1.0 and 2.0, different from most scale-free networks which have exponents near 3.0.Coefficients of degree correlation are lower than 0, similar to biological networks.The BA(Barabasi-Albert)model and other similar models cannot explain their dynamics.Relations between clustering coefficient and node degree obey scaling law, which suggests that there exist self-similar hierarchical structures in networks.The results suggest that structures of semantic networks are influenced by the ways we learn semantic knowledge such as aggregation and metaphor.
分析了2个大型语义网络HowNet和WordNet的全局意义结构.发现两者都是具有小世界和无尺度特征的复杂网络, 但具有一些独特的属性.两者连接度分布的幂律指数介于1.0和2.0之间, 而不是像许多常见的无尺度网络一样接近于3.0.连接度相关系数都小于0, 与生物性网络相似.BA模型以及与其相似的一些模型不能对其动力学加以解释.节点连接度与其聚集度指数之间遵循标度律, 表明网络中可能存在自相似的层次结构.认为人类学习语义知识的几种主要方式如聚合与隐喻等影响了语义网络的这些结构特征.

References:

[1] Collins A M, Loftus E F.A spreading-activation theory of semantic processing [J].Psychological Review, 1975, 82(6):407-428.
[2] Fellbaum C.WordNet, an electronic lexical database [M].Cambridge:MIT Press, 1998.1-20.
[3] Dong Z D.HowNet2000 [EB/OL].(2000-10-05)[2005-07-30].http://www.keenage.com.
[4] Ferrer R, Sole R V.The small world of human language [J].Proc Roy Soc London B, 2001, 268(1482):2261-2265.
[5] Dorogovtsev S N, Mendes J F F. Language as an evolving word web [J].Proc Roy Soc London B, 2001, 268(1485):2603-2606.
[6] Sigman M, Cecchi G A.Global organization of the wordnet lexicon [J].Proc Natl Acad Sci, 2002, 99(3):1742-1747.
[7] Steyvers M, Tenenbaum J B.The large-scale structure of semantic networks:statistical analyses and a model of semantic growth [J]. Cognitive Science, 2005, 29(1):41-78.
[8] Motter A E, de Moura A P S, Lai Y C, et al.Topology of the conceptual network of language [J].Phy Rev E, 2002, 65(6):065102.
[9] Barabasi A L, Albert R.Emergence of scaling in random networks [J].Science, 1999, 286(5439):509-512.
[10] Watts D J, Strogatz S H.Collective dynamics of small-world networks [J].Nature, 1998, 393(6684):440-442.
[11] Kim B J, Trusina A, Minnhagen P, et al.Self-organized scale-free networks from merging and regeneration [J].Euro Phys J B, 2005, 43(3):369-372.
[12] Alava M J, Dorogovtsev S N.Complex networks created by aggregation [J].Phys Rev E, 2005, 71(3):036107.
[13] Ravasz E, Barabasi A-L.Hierarchical organization in complex networks [J].Phys Rev E, 2003, 67(2):026112.
[14] Newman M E J.Assortative mixing in networks [J].Phys Rev Lett, 2002, 89(20):208701.
[15] Baars B J.In the theater of consciousness—the workspace of the mind [M].New York:Oxford University Press, 1997.39-61.
[16] Lakoff G, Johnson M.Metaphors we live by [M].Illinois:University of Chicago Press, 1980.106-155.

Memo

Memo:
Biographies: Tang Lu(1977—), male, graduate;Zhang Yongguang(corresponding author), male, professor, yzhang@iss.ac.cn.
Last Update: 2006-09-20