[1] Maskell S, Gordon S, Clapp N.A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking [J].IEEE Transactions on Signal Processing, 2002, 50(2):174-188.
[2] Merwe R, Doucet A, Freitas N, et al.The unscented particle filter, CUED/FINFENG/TR 380 [R].Cambridge:Cambridge University, 2000.
[3] Doucet A, Godsill S, Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering [J].Statistics and Computing, 2000, 10(3):197-208.
[4] Haykin S, Huber K, Chen Z.Bayesian sequential state estimation for MIMO wireless communication [J].Proceedings of the IEEE, 2004, 92(3):439-454.
[5] Kotecha J H, Djuric P M.Gaussian particle filtering [J].IEEE Transactions on Signal Processing, 2003, 51(10):2592-2601.
[6] Kotecha J H, Djuric P M.Gaussian sum particle filtering [J].IEEE Transactions on Signal Processing, 2003, 51(10):2602-2612.
[7] Isard M, Blake A.Condensation-conditional density propagation for visual tracking [J].International Journal of Computer Vision, 1998, 29(1):5-28.
[8] Comaniciu D, Ramesh V, Meer P.Kernel-based object tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-577.
[9] Comaniciu D, Meer P.Mean shift:a robust approach toward feature space analysis [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619.
[10] Isard M, Blake A.ICONDENSATION:unifying low-level and high-level tracking in a stochastic framework [C]//Proceeding of the 5th European Conference on Computer Vision. Freiburg, Germany, 1998, 1:893-908.