[1] Benguigui L.The fractal dimension of some railway networks[J].Journal de Physique Ⅰ, 1992(2):385-388.
[2] Benguigui L.A fractal analysis of the public transportation system of Paris[J].Environment and Planning A, 1995, 27(7):1147-1161.
[3] Batty M, Longley P.Fractal cities[M].London:Academic Press, 1994:23-25.
[4] Kim Kwang Sik, Benguigui Lucien, Marinov Maria.The fractal structure of Seoul’s public transportation system[J].Cities, 2003, 20(1):31-39.
[5] Chen Yanguang, Liu Jisheng.On fractal dimension calculation and analysis of urban form[J].Human Geography, 2007, 22(3):98-103.(in Chinese)
[6] Kalapala V, Sanwalani V, Clauset A, et al.Scale invariance in road networks[J].Physical Review E, 2006, 73(2):1-6.
[7] Marsili M, Zhang Y C.Interacting individuals leading to Zipf’s law[J].Physical Review Letters, 1998, 80(12):2741-2744.
[8] Urzua Carlos M.A simple and efficient test for Zipf’s law[J].Economics Letters, 2000, 66(3):257-260.
[9] Tan Minghong, Fan Cunhui.Relationship between Zipf dimension and fractal dimension of city-size distribution[J].Geographical Research, 2004, 23(2):243-248.(in Chinese)
[10] de Keersmaecker M-L, Frankhauser P, Thomas I.Using fractal dimensions for characterizing intra-urban diversity:the example of Brussels[J].Geographical Analysis, 2003, 35(4):310-328.
[11] Salingaros N A, West B J.A universal rule for the distribution of sizes[J].Environment and Planning B, 1999, 26(6):909-923.