|Table of Contents|

[1] Yu Jianjiang, Zhang Kanjian, Fei Shumin, et al. Improved delay-dependent stability criteria for stochastic systemswith time-varying interval delay [J]. Journal of Southeast University (English Edition), 2009, 25 (2): 213-218. [doi:10.3969/j.issn.1003-7985.2009.02.015]
Copy

Improved delay-dependent stability criteria for stochastic systemswith time-varying interval delay()
区间时滞随机系统的时滞相关稳定性改进判据
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 2
Page:
213-218
Research Field:
Automation
Publishing date:
2009-06-30

Info

Title:
Improved delay-dependent stability criteria for stochastic systemswith time-varying interval delay
区间时滞随机系统的时滞相关稳定性改进判据
Author(s):
Yu Jianjiang1 2 Zhang Kanjian1 Fei Shumin1
1School of Automation, Southeast University, Nanjing 210096, China
2School of Information Science and Technology, Yancheng Teachers University, Yancheng 224002, China
于建江1 2 张侃健1 费树岷1
1东南大学自动化学院, 南京 210096; 2盐城师范学院信息科学与技术学院, 盐城 224002
Keywords:
delay-dependent stability stochastic system interval delay linear matrix inequalities(LMIs)
时滞相关稳定性 随机系统 区间时滞 线性矩阵不等式
PACS:
TP271+.61
DOI:
10.3969/j.issn.1003-7985.2009.02.015
Abstract:
The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated.Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed.The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities(LMIs), which can be easily checked by the LMI in the Matlab toolbox.Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results.Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced.A numerical example is given to show the effectiveness and the benefits of the proposed method.
讨论了一类具有区间时变时滞的不确定随机系统的稳定性问题.利用区间时滞的上、下界信息, 构造了一个新颖的Lyapunov-Krasovskii泛函.以线性矩阵不等式(LMIs)形式给出了时滞相关稳定性的充分判据, 利用Matlab工具箱可以很容易对这些判据进行检验.推导过程基于Jensen积分不等式方法, 避免了系统模型变换和交叉项有界等易于产生保守性的方法的使用, 故得出判据的保守性小于文献中已有的结果.由于在获得的稳定性条件中没有引入多余的矩阵变量, 因此所得判据的计算复杂度明显降低.最后, 用一个数值例子说明了该方法的有效性和具有的优势.

References:

[1] Hale J K. Theory of functional differential equations[M].New York:Springer-Verlag, 1977.
[2] Gu K, Kharitonov V L, Chen J. Stability of time-delay systems[M].Basel:Birkhauser, 2003.
[3] Park P.A delay-dependent stability criterion for systems with uncertain time-invariant delays [J].IEEE Transactions on Automatic Control, 1999, 44(4):876-877.
[4] Moon Y S, Park P, Kwon W H, et al.Delay-dependent robust stabilization of uncertain state-delayed systems [J].International Journal of Control, 2001, 74(14):1447-1455.
[5] Zhang Xianming, Wu Min, She Jinhua, et al.Delay-dependent stabilization of linear systems with time-varying state and input delays [J].Automatica, 2005, 41(8):1405-1412.
[6] Lin Chong, Wang Qingguo, Lee Tonghen.A less conservative robust stability test for linear uncertain time-delay systems [J].IEEE Transactions on Automatic Control, 2006, 51(1):87-91
[7] Xu Shenyuan, Lam J, Zou Yun.New results on delay-dependent robust H control for systems with time-varying delays [J].Automatica, 2006, 42(2):343-348.
[8] He Yong, Wang Qingguo, Xie Lihua, et al.Further improvement of free-weighting matrices technique for systems with time-varying delay [J].IEEE Transactions on Automatic Control, 2007, 52(2):293-299.
[9] Park P, Ko J W.Stability and robust stability for systems with a time-varying delay [J].Automatica, 2007, 43(10):1855-1858.
[10] Xu Shenyuan, Lam J.On equivalence and efficiency of certain stability criteria for time-delay systems [J].IEEE Transactions on Automatic Control, 2007, 52(1):95-101.
[11] He Yong, Wang Qingguo, Lin Chong, et al.Delay-range-dependent stability for systems with time-varying delay [J].Automatica, 2007, 43(2):371-376.
[12] Li Tao, Guo Lei, Zhang Yuming.Delay-range-dependent robust stability and stabilization for uncertain systems with time-varying delay [J].International Journal of Robust and Nonlinear Control, 2008, 18(13):1372-1387.
[13] Peng Cheng, Tian Yuchu.Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay [J].IET Control Theory and Applications, 2008, 2(9):752-761.
[14] Jiang Xiefu, Han Qinglong.New stability criteria for linear systems with interval time-varying delay [J].Automatica, 2008, 44(10):2680-2685.
[15] Zhang Baoyong, Xu Shenyuan, Zou Yun.Improved stability criterion and its applications in delayed controller design for discrete-time systems [J].Automatica, 2008, 44(11):2963-2967.
[16] Mao Xuerong.Stochastic differential equations and their applications [M].Chichester:Horwood Publishing, 1997.
[17] Boukas E K, Liu Z K.Deterministic and stochastic systems with time-delay [M].Boston:Birkhauser, 2002.
[18] Cao Yongyan, Lam J, Hu Lisheng.Delay-dependent stochastic stability and H analysis for time-delay systems with Markovian jumping parameters [J].Journal of the Franklin Institute, 2003, 340(6/7):423-434.
[19] Chen Wuhua, Guan Zhihong, Lu Xiaomei.Delay-dependent exponential stability of uncertain stochastic systems with multiple delays:an LMI approach [J].System and Control Letters, 2005, 54(6):547-555.
[20] Yue Dong, Han Qinglong.Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching [J].IEEE Transactions on Automatic Control, 2005, 50(2):517-522.
[21] Xu Shenyuan, Lam J, Mao Xuerong, et al.A new LMI condition for delay dependent robust stability of stochastic time-delay systems [J].Asian Journal of Control, 2005, 7(4):419-423.
[22] Gao Huijun, Lam J, Wang Changhong.Robust energy-to-peak filter design for stochastic time-delay systems [J].System and Control Letters, 2006, 55(2):101-111.
[23] Gershon E, Shaked U, Berman N.H control and estimation of retarded state-multiplicative stochastic systems [J]. IEEE Transactions on Automatic Control, 2007, 52(9):1773-1779.
[24] Chen Yun, Xue Anke.Improved stability criterion for uncertain stochastic delay systems with nonlinear uncertainties [J].IET Electronics Letters, 2008, 44(7):458-459.

Memo

Memo:
Biographies: Yu Jianjiang(1975—), male, graduate;Zhang Kanjian(corresponding author), male, doctor, professor, kjzhang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.60874030, 60574006, 60404006), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125).
Citation: Yu Jianjiang, Zhang Kanjian, Fei Shumin.Improved delay-dependent stability criteria for stochastic systems with time-varying interval delay[J].Journal of Southeast University(English Edition), 2009, 25(2):213-218.
Last Update: 2009-06-20