|Table of Contents|

[1] Zhang Yi, Wang Kai, Ren Zhiyan, Zhai Ya, et al. Structure and magnetic properties of Zn ferrite nanoparticles [J]. Journal of Southeast University (English Edition), 2009, 25 (3): 408-412. [doi:10.3969/j.issn.1003-7985.2009.03.026]
Copy

Structure and magnetic properties of Zn ferrite nanoparticles()
锌铁氧体纳米颗粒的结构与磁性研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 3
Page:
408-412
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2009-09-30

Info

Title:
Structure and magnetic properties of Zn ferrite nanoparticles
锌铁氧体纳米颗粒的结构与磁性研究
Author(s):
Zhang Yi, Wang Kai, Ren Zhiyan, Zhai Ya
Department of Physics, Southeast University, Nanjing 211189, China
张毅, 王凯, 任志艳, 翟亚
东南大学物理系, 南京 211189
Keywords:
magnetic materials Zn ferrite Mö ssbauer spectra magnetic properties
磁性材料 锌铁铁氧体 穆斯堡尔谱 磁性
PACS:
O482
DOI:
10.3969/j.issn.1003-7985.2009.03.026
Abstract:
A series of ZnxxFe3-xO4(x=0, 0.15, 0.30, 0.40, 0.48, 0.60, 0.70)nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mössbauer spectrometer. All samples present a spinel structure. The lattice constant increases with the increase in the Zn content while the grain size decreases from 18 nm to 9 nm. Moreover, the saturation magnetization at 5 K and 293 K increases initially when x≤0.40 and subsequently decreases when x>0.40. At room temperature, Mössbauer spectra exhibit a change from a well-defined sextet spectrum to a doublet spectrum as the Zn content increases. The doublet spectrum begins to appear when x=0.6, while it begins when x=0.80 for the bulk materials. The results of magnetization and Curie temperature measurements indicate that the doublet spectrum is due to the surperparamagnetic state of the nanoparticles. Furthermore, the relationship between the hyperfine field variation and the cation distribution is discussed. The variation of magnetic properties is interpreted by the three-sublattice Yafet-Kittel(Y-K)model.
通过水热法制备了一系列具有不同锌含量的ZnxxFe3-xO4(x=0, 0.15, 0.30, 0.40, 0.48, 0.60, 0.70)纳米颗粒, 并利用透射电子显微镜、X射线衍射仪、振动样品磁强计、超导量子干涉仪和穆斯堡尔谱仪对其进行研究. 所有样品均为尖晶石结构; 随着样品中锌含量的增加, 其晶格常数随之增加, 晶粒尺寸从18 nm减小到9 nm. 在5 K 和293 K时, ZnxxFe3-xO4纳米颗粒的饱和磁化强度首先随着Zn含量的增加而增大, 并在x=0.4时达到最大, 随后随着Zn含量的增加而减小. 室温下穆斯堡尔谱的测量结果表明:随着锌含量的增加, 谱线由较为标准的六线峰逐渐转变为双峰, 且在x=0.60时表现为明显的双峰结构, 而大块材料在x=0.80时才有类似结果. 饱和磁化强度和居里温度的测量结果表明, 这种现象可能是由于样品中纳米颗粒表现出的超顺磁性导致的. 此外, 还讨论了离子分布对超精细磁场变化的影响, 并利用Yafet-Kittel模型对样品的磁性变化进行解释.

References:

[1] Suto M, Kosukegawa H, Maruta K, et al. Heat diffusion characteristics of magnetite nanoparticles dispersed hydro-gel in alternating magnetic field [J]. J Magn Magn Mater, 2009, 321(20): 3483-3487.
[2] Lebedev A V, Lysenko S N. A multifunctional stabilizer of magnetic fluids [J]. Appl Phys Lett, 2009, 95(1): 135081-135083.
[3] Begtrup G E, Gannett W, Yuzvinsky T D, et al. Nanoscale reversible mass transport for archival memory [J]. Nano Lett, 2009, 9(5): 1835-1838.
[4] Goya G F, Berquo T S, Fonseca F C, et al. Static and dynamic magnetic properties of spherical magnetite nanoparticles [J]. J Appl Phys, 2003, 94(5): 3520-3528.
[5] Kinnari P, Upadhyay R V, Mehta R V. Magnetic properties of Fe-Zn ferrite substituted ferrofluids [J]. J Magn Magn Mater, 2002, 252(1/2): 35-38.
[6] Hamdeh H H, Ho J C. Magnetic properties of partially-inverted zinc ferrite aerogel powders [J]. J Appl Phys, 1997, 81(4): 1851-1857.
[7] Hüseyin K, Abdülhadi B, Muhammet S T, et al. Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route [J]. J Alloy Compd, 2009, 479(1/2): 49-55.
[8] Pannunzio-Miner E V, De Paoli J M, Sanchez R D, et al. Crystal and magnetic structure and cation distribution of Mn2-xV1+xO4 spinels(x=0, 1/3 and 1)[J]. Mater Res Bull, 2009, 44(7): 1586-1591.
[9] Suwalka O, Sharma R K, Sebastian V, et al. A study of nanosized Ni substituted Co-Zn ferrite prepared by coprecipitation [J]. J Magn Magn Mater, 2007, 313(1): 198-203.
[10] Ma Ming, Zhang Yu, Yu Wei, et al. Preparation and characterization of magnetite nanoparticles coated by amino silane [J]. Colloid Surface A, 2003, 212(2/3): 219-226.
[11] Srivastava C M, Shringi S N, Srivastava R G. Mössbauer study of relaxation phenomena in zinc-ferrous ferrites [J]. Phys Rev B, 1976, 14(5): 2041-2050.
[12] Li Y T, Li Q, Wen M L, et al. Magnetic properties and local structure studies of Zn doped ferrites [J]. J Electron Spectrosc Relat Phenom, 2007, 160(1/2/3): 1-6.
[13] Srivastava C M, Shringi S N, Srivastava R G, et al. Magnetic ordering and domain-wall relaxation in zinc-ferrous ferrites [J]. Phys Rev B, 1976, 14(5): 2032-2040.
[14] Liou S H, Chien C L. Particle size dependent of the magnetic properties of ultrafine granular films. [J]. J Appl Phys, 1988, 63(8): 4240-4242.
[15] Smit J, Wijn H P J. Ferrites [M]. New York: John Weily, 1959: 150.

Memo

Memo:
Biographies: Zhang Yi(1980—), male, graduate; Zhai Ya(corresponding author), female, doctor, professor, yazhai@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.50871029), Open Foundation of National Laboratory of Solid State Microstructure of Nanjing University, Open Foundation of Key Laboratory of the Thin Film Material of Jiangsu Province, the Science Research Foundation of Graduate School of Southeast University, the Jiangsu Provincial Innovation Project.
Citation: Zhang Yi, Wang Kai, Ren Zhiyan, et al. Structure and magnetic properties of Zn ferrite nanoparticles[J]. Journal of Southeast University(English Edition), 2009, 25(3): 408-412.
Last Update: 2009-09-20