|Table of Contents|

[1] Huang Gang, Wang Ruchuan, Xie Yongjuan, Shi Xiaojuan, et al. Load prediction of grid computing resourcesbased on ARSVR method [J]. Journal of Southeast University (English Edition), 2009, 25 (4): 451-455. [doi:10.3969/j.issn.1003-7985.2009.04.007]
Copy

Load prediction of grid computing resourcesbased on ARSVR method()
基于ARSVR方法的网格计算资源负载预测
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 4
Page:
451-455
Research Field:
Computer Science and Engineering
Publishing date:
2009-12-30

Info

Title:
Load prediction of grid computing resourcesbased on ARSVR method
基于ARSVR方法的网格计算资源负载预测
Author(s):
Huang Gang Wang Ruchuan Xie Yongjuan Shi Xiaojuan
College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
黄刚 王汝传 解永娟 石小娟
南京邮电大学计算机学院, 南京 210003
Keywords:
grid autoregressive support vector regression algorithm computing resource load prediction
网格 自回归支持向量回归机算法 计算资源 负载预测
PACS:
TP393
DOI:
10.3969/j.issn.1003-7985.2009.04.007
Abstract:
Based on the monitoring and discovery service 4(MDS4)model, a monitoring model for a data grid which supports reliable storage and intrusion tolerance is designed. The load characteristics and indicators of computing resources in the monitoring model are analyzed. Then, a time-series autoregre-ssive prediction model is devised. And an autoregressive support vector regression(ARSVR)monitoring method is put forward to predict the node load of the data grid.Finally, a model for histo-rical observations sequences is set up using the autoregressive(AR)model and the model order is determined.The support vector regression(SVR)model is trained using historical data and the regression function is obtained. Simulation results show that the ARSVR method can effectively predict the node load.
在MDS4监控模型的基础上, 设计了基于可靠存储与容侵数据网格的监控模型, 分析了监控模型中计算资源的负载特性、指标. 然后, 设计了基于SVR的时间序列自回归预测模型, 提出了用于数据网格负载预测的监控ARSVR方法. 最后, 利用AR模型对历史观测序列进行建模, 确定模型的阶次. 根据历史数据对SVR进行训练, 得到回归函数. 仿真实验结果表明, ARSVR方法能对节点的负载进行有效预测.

References:

[1] Foster I, Kishimoto H, Savva A, et al. The open grid services architecture version 1.5[EB/OL].(2006-07-24)[2006-08-23]. http://forge.gridforum.org/projects/ogsa-wg.
[2] Ma Yongzheng, Nan Kai, Yan Baoping. MDS-based information service for data grid[J]. Microelectronics & Computer, 2003, 20(8):27-30.(in Chinese)
[3] Dinda P, O’Halloran D. The statistical properties of host load [J]. Scientific Programming, 1999, 7(3): 211-229.
[4] Huang Changqing, Xu Haishui, Zhong Huiyun. Host load prediction based on AR module[J]. Computer Technology and Development, 2007, 17(9): 38-40.(in Chinese)
[5] He Shuyuan. Using time series analysis[M]. Beijing: Peking University Press, 2003: 234-238.(in Chinese)
[6] Ren Xunyi, Wang Ruchuan, Xie Yongjuan. Comparisons of SVM and LS-SVM for intrusion detection[J]. Computer Science, 2008, 35(10): 83-85.(in Chinese)
[7] Zhang Haoran, Wang Xiaodong, Zhang Changjiang, et al. Learning algorithm for a new regression SVM[J]. Journal of Test and Measurement Technology, 2006, 20(2): 168-173.(in Chinese)
[8] Sun Deshan, Wu Jinpei, Xiao Jianhua. The application of SVR to prediction of chaotic time series[J]. Acta Simulata Systematica Sinica, 2004, 16(3): 519-521.(in Chinese)
[9] Xu Feng, Wang Zhifang. Research on AR model applied to forecast trend of vibration signals [J]. Journal of Tsinghua University: Science and Technology, 1999, 39(4): 57-59.(in Chinese)
[10] Chen Shuncai. The research of time series prediction based on support vector machine[D]. Lanzhou:College of Electrical and Information Engineering of Lanzhou University of Technology, 2008.(in Chinese)
[11] Liu Renbin. Matlab 6 computation engineering and application[M]. Chongqing: Chongqing University Press, 2001.(in Chinese)

Memo

Memo:
Biography: Huang Gang(1961—), male, associate professor, huanggang@njupt.edu.cn.
Foundation item: The National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z404).
Citation: Huang Gang, Wang Ruchuan, Xie Yongjuan, et al. Load prediction of grid computing resources based on ARSVR method[J]. Journal of Southeast University(English Edition), 2009, 25(4): 451-455.
Last Update: 2009-12-20