|Table of Contents|

[1] Shan Haiyan, Wang Wenping,. Generation of scale-free knowledge networkwith local world mechanism [J]. Journal of Southeast University (English Edition), 2009, 25 (4): 545-548. [doi:10.3969/j.issn.1003-7985.2009.04.027]
Copy

Generation of scale-free knowledge networkwith local world mechanism()
局域世界机制下无标度知识网络的生成模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 4
Page:
545-548
Research Field:
Economy and Management
Publishing date:
2009-12-30

Info

Title:
Generation of scale-free knowledge networkwith local world mechanism
局域世界机制下无标度知识网络的生成模型
Author(s):
Shan Haiyan Wang Wenping
School of Economics and Management, Southeast University, Nanjing 210096, China
单海燕 王文平
东南大学经济管理学院, 南京 210096
Keywords:
knowledge network network structure scale-free local world mechanism
知识网络 网络结构 无标度 局域世界机制
PACS:
C93-03
DOI:
10.3969/j.issn.1003-7985.2009.04.027
Abstract:
In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node’s local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node’s local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena.
为了更真实地模拟现实知识网络的成长过程, 构造了一类基于局域连接机制下的知识网络生成模型. 利用统计物理学中的平均场方法, 给出了知识网络度分布的理论预测, 并运用Matlab仿真进行了验证: 当局域世界规模很小时, 网络度的分布函数近似服从无标度分布, 当局域世界规模不是很小时, 网络度的分布会从纯粹的无标度状态变化成尾状物服从指数分布的近似无标度状态, 且无标度指数随着可调参数增加而增加, 随着新增边数的增加而减少. 最后, 比较了在局域连接机制和全局连接机制下生成的知识网络的一些知识指标.从长期来看, 与全局机制相比, 局域机制会导致网络平均知识水平增长缓慢, 而且网络同质化现象严重.

References:

[1] Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97.
[2] Dorogovtsev S N, Mendes J F. Evolution of networks[J]. Advances in Physics, 2002, 51(4): 1079-1187.
[3] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(15): 509-512.
[4] Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A, 1999, 272(1/2): 173-187.
[5] Chakrabarti D, Faloutsos C. Graph mining: laws, generators and algorithms[J]. ACM Computing Surveys, 2006, 38(1): 1-70.
[6] Mukherjee G, Manna S S. Quasistatic scale-free networks[J]. Physical Review E, 2003, 67(1): 012101.
[7] Ree S. Generation of scale-free networks using a simple preferential-rewiring dynamics[J]. Physica A, 2007, 376(1/2): 692-698.
[8] Deng K, Zhao H, Li D. Effect of node deleting on network structure[J]. Physica A, 2007, 379(2): 714-726.
[9] Li M, Wu J, Wang D, et al. Evolving model of weighted networks inspired by scientific collaboration networks[J]. Physica A, 2007, 375(1): 355-364.
[10] Bedogne C, Rodgers G J. Complex growing networks with intrinsic vertex fitness[J]. Physical Review E, 2006, 74(4): 046115.
[11] Li X, Chen G. A local-world evolving network model[J]. Physica A, 2003, 328(1/2), 274-286.
[12] Gu Y, Sun J. A local-world node deleting evolving network model[J]. Physics Letters A, 2008, 372(25): 4564-4568.
[13] Watts D. Strogatz S. Collective dynamics of “small-world” networks[J]. Nature, 1998, 393(6684): 440-442.
[14] Watts D. Networks, dynamics and the small-world phenomenon[J]. American Journal of Sociology, 1999, 105(2): 493-527.
[15] Cowan R, Jonard N. Network structure and the diffusion of knowledge[J]. Journal of Economic Dynamics and Control, 2004, 28(8): 1557-1575.
[16] Cowan R, Jonard N, Ozman M. Knowledge dynamics in a network industry[J]. Technological Forecasting and Social Change, 2004, 71(5): 469-484.
[17] Tang F, Xi Y, Ma J. Estimating the effect of organizational structure on knowledge transfer: a neural network approach[J]. Expert Systems with Applications, 2006, 30(4): 796-800.
[18] Yin C, Wang B, Wang W, et al. Efficient routing on scale-free networks based on local information[J]. Physics Letters A, 2006, 351(3): 220-224.

Memo

Memo:
Biographies: Shan Haiyan(1981—), female, graduate; Wang Wenping(corresponding author), female, doctor, professor, wpwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.70571013, 70973017), Program for New Century Excellent Talents in University(No.NCET-06-0471), Human Social Science Fund Project of Ministry of Education(No. 09YJA630020).
Citation: Shan Haiyan, Wang Wenping. Generation of scale-free knowledge network with local world mechanism[J]. Journal of Southeast University(English Edition), 2009, 25(4): 545-548.
Last Update: 2009-12-20