|Table of Contents|

[1] Yang Tao, Wang Shuanhong,. π-quasitriangular group-cograded multiplier Hopf algebras [J]. Journal of Southeast University (English Edition), 2009, 25 (4): 552-556. [doi:10.3969/j.issn.1003-7985.2009.04.029]
Copy

π-quasitriangular group-cograded multiplier Hopf algebras()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
25
Issue:
2009 4
Page:
552-556
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2009-12-30

Info

Title:
π-quasitriangular group-cograded multiplier Hopf algebras
Author(s):
Yang Tao Wang Shuanhong
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
multiplier Hopf algebra group-cograded Drinfeld double quasitriangular
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2009.04.029
Abstract:
Let G be a group and 〈A, B〉 be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, Dπ=Acop∝(~overB)=⊕p∈GDπp with Dπp=Acop∝(~overB)p is the Drinfeld double of the pair 〈A, B〉, and then the deformation(~overD)π becomes a multiplier Hopf algebra. B⊗A can be considered as a subalgebra of M(Dπ⊗Dπ), the image of element b⊗a in B⊗A is(1∝b)⊗(a∝1)in M(Dπ⊗Dπ). LetW=∑αWα∈M(B⊗A)be a π-canonical multiplier for the pair 〈A, B〉 with Wα∈M(Bα⊗A)for all α∈G. The image of W in M(Dπ⊗Dπ)is a π-quasitriangular structure over Dπ.

References:

[1] Van Daele A. Multiplier Hopf algebras[J]. Transactions of the American Mathematical Society, 1994, 342(2): 917-932.
[2] Van Daele A. An algebraic framework for group duality[J]. Advance in Mathematics, 1998, 140(2): 323-366.
[3] Abd El-Hafez A T, Delvaux L, Van Daele A. Group-cograded multiplier Hopf(*-)algebra[J]. Algebras and Representation Theory, 2007, 10(1): 77-95.
[4] Virelizier A. Hopf group-coalgebras[J]. Journal of Pure and Applied Algebra, 2002, 171(1): 75-122.
[5] Delvaux L. Yetter-Drinfeld modules for group-cograded multiplier Hopf algebras[J]. Communications in Algebra, 2008, 36(8): 2872-2882.
[6] Delvaux L, Van Daele A, Wang S H. Quasitriangular(G-cograded)multiplier Hopf algebras[J]. Journal of Algebra, 2005, 289(2): 484-514.
[7] Delvaux L, Van Daele A. The Drinfeld double for group-cograded multiplier Hopf algebras[J]. Algebras and Representation Theory, 2007, 10(3): 197-221.
[8] Delvaux L, Van Daele A. The Drinfeld double versus the Heisenberg double for an algebraic quantum group[J]. Journal of Pure and Applied Algebra, 2004, 190(1): 59-84.

Memo

Memo:
Biographies: Yang Tao(1984—), male, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang2002@yahoo.com.
Foundation items: Specialized Research Fund for the Doctoral Program of Higher Education(No.20060286006), the National Natural Science Foundation of China(No.10871042).
Citation: Yang Tao, Wang Shuanhong. π-quasitriangular group-cograded multiplier Hopf algebras[J]. Journal of Southeast University(English Edition), 2009, 25(4): 552-556.
Last Update: 2009-12-20