[1] Birkhoff G D. Dynamical systems [M]. Providence, RI, USA: AMS College Publication, 1927.
[2] Santilli R M. Foundations of theoretical mechanics Ⅱ [M]. New York: Springer-Verlag, 1983.
[3] Mei F X. Noether theory of Birkhoffian system [J]. Science in China Series A: Mathematic, 1993, 36(12): 1456-1547.
[4] Mei F X. Stability of equilibrium for the autonomous Birkhoff system [J]. Chin Sci Bull, 1993, 38(10): 816-819.
[5] Mei F X, Lévesque E I. Generalized canonical realization and Birkhoff’s realization of Chaplygin’s nonholonomic system [J]. Transactions of the CSME, 1995, 19(2): 59-73.
[6] Mei F X, Shi R C, Zhang Y F, et al. Dynamics of Birkhoffian systems [M]. Beijing: Beijing Institute of Technology Press, 1996.(in Chinese)
[7] Mei F X, Zhang Y F, Shang M. Lie symmetries and conserved quantities of Birkhoffian system [J]. Mech Res Commun, 1999, 26(1): 7-12.
[8] Mei F X. Applications of Lie groups and Lie algebras to constrained mechanical systems [M]. Beijing: Science Press, 1999.(in Chinese)
[9] Zhu H P, Wu J K. Generalized canonical transformations and symplectic algorithm of autonomous Birkhoffian systems [J]. Progr Nat Sci, 1999, 9(11): 820-828.
[10] Mei F X, Zhang Y F, Shi R C. Dynamics algebra and its application [J]. Acta Mech, 1999, 137(3/4): 255-260.
[11] Mei F X. On the Birkhoffian mechanics [J]. Int J Nonlinear Mech, 2001, 36(5): 817-834.
[12] Guo Y X, Luo S K, Shang M, et al. Birkhoffian formulations of nonholonomic constrained systems [J]. Rep Math Phys, 2001, 47(3): 313-322.
[13] Zhang Y. Construction of the solution of variational equations for constrained Birkhoffian systems [J]. Chin Phys, 2002, 11(5): 437-440.
[14] Zhang Y. A set of conserved quantities from Lie symmetries for Birkhoffian systems [J]. Acta Phys Sinica, 2002, 51(3): 461-465.(in Chinese)
[15] Luo S K. First integrals and integral invariants of relativistic Birkhoffian systems[J]. Commun Theor Phys, 2003, 40(2): 133-136.
[16] Chen X W. Closed orbits and limit cycles of second-order autonomous Birkhoff system [J]. Chin Phys, 2003, 12(6): 586-589.
[17] Zhang Y, Fan C X, Ge W K. A new type of conserved quantities for Birkhoffian systems [J]. Acta Phys Sinica, 2004, 53(11): 3644-3647.(in Chinese)
[18] Mei F X. Symmetries and conserved quantities of constrained mechanical systems [M]. Beijing: Beijing Institute of Technology Press, 2004.(in Chinese)
[19] Galiullin A S. Analytical dynamics [M]. Moscow: Nauka, 1989.(in Russian)
[20] Galiullin A S, Gafarov G G, Malaishka R P, et al. Analytical dynamics of Helmholtz, Birkhoff and Nambu systems [M]. Moscow: UFN, 1997.(in Russian)
[21] Mei F X, Zhang Y F, He G, et al. Fundamental framework of generalized Birkhoff system dynamics [J]. Transactions of Beijing Institute of Technology, 2007, 27(12): 1035-1038.(in Chinese)
[22] Bluman G W, Kumei S. Symmetries and differential equations [M]. New York: Springer-Verlag, 1989.
[23] Hojman S A. A new conservation law constructed without using either Lagrangians or Hamiltonians[J].J Phys A: Math Gen, 1992, 25(7):L291-L295.
[24] Mei F X. Form invariance of Lagrange system [J]. J Beijing Institute of Technology, 2000, 9(2): 120-124.