|Table of Contents|

[1] Wang Chong, Zhao Li, Zou Cairong,. Perceptual video coding method based on JND and AR model [J]. Journal of Southeast University (English Edition), 2010, 26 (3): 384-388. [doi:10.3969/j.issn.1003-7985.2010.03.003]
Copy

Perceptual video coding method based on JND and AR model()
基于JND和AR模型的感知视频编码方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 3
Page:
384-388
Research Field:
Information and Communication Engineering
Publishing date:
2010-09-30

Info

Title:
Perceptual video coding method based on JND and AR model
基于JND和AR模型的感知视频编码方法
Author(s):
Wang Chong Zhao Li Zou Cairong
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
王翀 赵力 邹采荣
东南大学信息科学与工程学院, 南京 210096
Keywords:
perceptual video coding texture synthesis just-noticeable-distortion AR model
感知视频编码 纹理合成 最小可视失真 AR模型
PACS:
TN911.73
DOI:
10.3969/j.issn.1003-7985.2010.03.003
Abstract:
In order to achieve better perceptual coding quality while using fewer bits, a novel perceptual video coding method based on the just-noticeable-distortion(JND)model and the auto-regressive(AR)model is explored. First, a new texture segmentation method exploiting the JND profile is devised to detect and classify texture regions in video scenes. In this step, a spatial-temporal JND model is proposed and the JND energy of every micro-block unit is computed and compared with the threshold. Secondly, in order to effectively remove temporal redundancies while preserving high visual quality, an AR model is applied to synthesize the texture regions. All the parameters of the AR model are obtained by the least-squares method and each pixel in the texture region is generated as a linear combination of pixels taken from the closest forward and backward reference frames. Finally, the proposed method is compared with the H.264/AVC video coding system to demonstrate the performance. Various sequences with different types of texture regions are used in the experiment and the results show that the proposed method can reduce the bit-rate by 15% to 58% while maintaining good perceptual quality.
为了达到减少比特数同时保持画面质量的目的, 提出了一种基于最小可视失真(JND)和自回归(AR)模型的感知视频编码方法.首先, 设计了基于JND的纹理分割算法, 建立了空时JND模型, 以MB为基本单元, 通过计算其JND能量并与阈值做比较, 用以分割出视频序列中的纹理区域. 然后, 开发了AR模型来合成纹理区, 在使用最小二乘法计算出AR模型的参数后, 用相邻的前后参考帧对应像素的线性插值来生成重构像素. 最后, 为了检验所提方法的效果, 将其与H.264/AVC视频编码系统做比较, 用不同的视频序列实验来验证所提方法的有效性.实验结果显示, 对于具有不同纹理特点的实验序列, 所提方法可以在保持感知质量的同时将比特率减少15%~58%.

References:

[1] ISO/IEC 15444-1 Team. Our new standard [EB/OL].(2000-03-11)[2010-04-20]. http://www.jpeg.org/jpeg2000/.
[2] Wikipedia. H.264/MPEG-4 AVC [EB/OL].(2003-11-25)[2010-04-20]. http://en.wikipedia.org/wiki/H.264/.
[3] Ndjiki-Nya P, Wiegand T. Video coding using texture analysis and synthesis [C]//Proceedings of Picture Coding. Saint-Malo, France, 2003: 489-497.
[4] Zhang Y, Ji X, Zhao D, et al. Video coding by texture analysis and synthesis using graph cut [C]//Proceedings of Pacific-Rim Multimedia Conference. Heidelberg, Germany, 2006: 582-589.
[5] Zhu C, Sun X, Wu F, et al. Video coding with spatio-temporal texture synthesis[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Beijing, China, 2007:112-115.
[6] Yang X K, Ling W S, Lu Z K. Just noticeable distortion model and its applications in video coding [J]. Signal Processing: Image Communication, 2005, 20(7): 662-680.
[7] Wu X, Barthel K U, Zhang W. Piecewise 2D auto-regression for predictive image coding [C]//Proceedings of the IEEE International Conference on Image Processing. Chicago, USA, 1998: 901-904.
[8] Tugnait J K. Texture synthesis using asymmetric 2-D noncausal AR models [C]//Proceedings of the IEEE International Conference on Image Processing. South Lake Tahoe, USA, 1993: 71-75.
[9] Chou C H, Li Y C. A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile [J]. IEEE Transactions on Circuits System and Video Technology, 1995, 5(12): 467-476.
[10] Yang X, Lin W, Lu Z, et al. Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile [J]. IEEE Transactions on Circuits System and Video Technology, 2005, 15(6): 742-752.
[11] Safranek R J, Johnston J D. A perceptually tuned subband image coder with image dependent quantization and post-quantization data compression [C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Glasgow Scotland, UK, 1989:1945-1948.
[12] Watson A B, Yang G Y, Solomon J A, et al. Visibility of wavelet quantization noise [J]. IEEE Transactions on Image Processing, 1997, 6(8): 1164-1175.
[13] Watson A B. Perceptual optimization of DCT color quantization matrices [C]//Proceedings of IEEE International Conference on Image Processing. Austin, USA, 1994:100-104.
[14] Lubin J. A visual system discrimination model for imaging system design and evaluation [J]. Vision Models for Target Detection and Recognition, 1995, 6(15): 245-283.
[15] Netravali A N, Prasada B. Adaptive quantization of picture signals using spatial masking [J]. IEEE Transactions on Signal Processing, 1977, 65(4): 536-548.
[16] Chou C H, Chen C W. A perceptually optimized 3-D subband codec for video communication over wireless channels [J]. IEEE Transactions on Circuits System and Video Technology, 1996, 6(4): 143-156.

Memo

Memo:
Biography: Wang Chong(1982—), male, doctor, lecturer, wangchong219@163.com.
Foundation item: The National Natural Science Foundation of China(No.60472058, 60975017).
Citation: Wang Chong, Zhao Li, Zou Cairong. Perceptual video coding method based on JND and AR model[J].Journal of Southeast University(English Edition), 2010, 26(3):384-388.
Last Update: 2010-09-20