[1] Ojalvo I U, Newman M. Buckling of naturally curved and twisted beams [J]. Journal of the Engineering Mechanics Division, ASCE, 1968, 94(EM5):1067-1087.
[2] Rosen A, Rand O. Numerical model of the nonlinear behavior of curved rods [J]. Compt Struct, 1986, 22(5): 785-799.
[3] Bauchau O A, Hong C H. Nonlinear composite beam theory [J]. Journal of Applied Mechanics, 1988, 55(3):156-163.
[4] Pai P F, Nayfeh A H. A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects [J]. Int J Solids Structures, 1994, 31(9): 1309-1340.
[5] Vlasov V Z. Thin-walled elastic beams [M]. 2nd ed. Jerusalem: Israel Program for Scientific Translation, 1961: 173-181.
[6] Yang Y B, Kuo S R. Effect of curvature on stability of curved beams [J]. J Struct Engrg, 1987, 113(6): 1185-1202.
[7] Timoshenko S P, Gere J M. Theory of elastic stability [M]. 2nd ed. New York: McGraw Hill Book Co. Inc, 1961: 154-157.
[8] Clough R W, Penzien J. Dynamics of structures [M]. 2nd ed. Berkeley, CA, USA: Computers & Structures Inc, 1995: 200-210.
[9] Yang Y B, Lin S P, Leu L J. Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation [J]. Engineering Structures, 2007, 29(6):1189-1200.
[10] Teh L H, Clarke M J. Corotational and Lagrangian formulations for elastic three-dimensional beam finite elements [J]. Journal of Constructional Steel Research, 1998, 48(2/3): 123-144.
[11] Williams F W. An approach to the non-linear behavior of the members of a rigid jointed plane framework with finite deflections [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17(4): 451-469.