|Table of Contents|

[1] Zhou Xuan, Liu Ling, Wang Shuanhong,. Duality theorem for smash coproduct over quantum groupoids [J]. Journal of Southeast University (English Edition), 2010, 26 (4): 647-650. [doi:10.3969/j.issn.1003-7985.2010.04.030]
Copy

Duality theorem for smash coproduct over quantum groupoids()
量子群胚上的smash余积对偶定理
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 4
Page:
647-650
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2010-12-30

Info

Title:
Duality theorem for smash coproduct over quantum groupoids
量子群胚上的smash余积对偶定理
Author(s):
Zhou Xuan1 Liu Ling2 Wang Shuanhong1
1Department of Mathematics, Southeast University, Nanjing 211189, China
2College of Mathematics Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
周璇1 刘玲2 王栓宏1
1东南大学数学系, 南京211189; 2浙江师范大学数理信息学院, 金华321004
Keywords:
weak Hopf algebras(quantum groupoids) weak generalized smash coproducts weak module coalgebras weak comodule coalgebras weak bimodule coalgebras duality theorem
弱Hopf代数(量子群胚) 弱广义smash余积 弱模余代数 弱余模余代数 弱双模余代数 对偶定理
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2010.04.030
Abstract:
The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied. Let H be a weak Hopf algebra, C a left weak H-comodule coalgebra and D a left weak H-module coalgebra. First, a weak generalized smash coproduct C×lHH D over quantum groupoids is defined and the module and comodule structures on it are constructed. The weak generalized right smash coproduct C×rLL D is similar. Then some isomorph-isms between them are obtained. Secondly, by introducing some concepts of a weak convolution invertible element, a weak co-inner coaction and a strongly relative co-inner coaction, a sufficient condition for C×rHH D to be isomorphic to Cvv D is obtained, where v∈WC(C, H)^- and the coaction of H on D is right strongly relative co-inner. Finally, the duality theorem for a generalized smash coproduct over quantum groupoids, (C×lHH HlH* H*Cvv(H×lH* H*), is obtained.
研究了量子群胚上与弱模余代数和余模余代数相关的弱广义smash余积的对偶定理.设H是弱Hopf代数, C是弱左H余模余代数, D是弱左H模余代数.首先, 给出量子群胚上的弱广义smash余积C×lHH D的定义, 并构造其模和余模结构.类似考虑右广义smash余积C×rLL D.然后得到它们之间的同构.其次, 通过引入弱卷积逆, 弱余内作用和强相关余内作用的概念, 得到C×rHH DCvvD同构的充分条件, 其中v∈WC(C, H)^-, HD上的余作用是右强相关余内作用.最后, 证明了量子群胚上广义smash余积的对偶定理:(C×lHH HlH* H*Cvv(H×lH* H*).

References:

[1] Böhm G, Nill F, Szlachanyi K. Weak Hopf algebra Ⅰ: integral theory and C*-structure [J]. J Algebra, 1999, 221(2): 385-438.
[2] Nikshych D, Turaev V, Vainerman L. Invariants of knots and 3-manifolds from quantum groupoids [J]. Topology and Its Applications, 2003, 127(1/2): 91-123.
[3] Nikshych D. On the structure of weak Hopf algebras [J]. Adv in Math, 2002, 170(2): 257-286.
[4] Van Daele A, Wang S H. New braided crossed categories and Drinfel’d quantum double for weak Hopf group coalgebras [J]. Comm in Algebra, 2008, 36(6): 2341-2386.
[5] Wang S H. Cibils-Rosso’s theorem for quantum groupoids [J]. Comm in Algebra, 2004, 32(9): 3703-3723.
[6] Molnar R K. Semi-direct products of Hopf algebras [J]. J Algebra, 1977, 47(1): 29-51.
[7] Wang S H. A duality theorem for Hopf comodule coalgebras [J]. Chinese Science Bulletin, 1994, 39(15): 1239-1244.
[8] Sweedler M E. Hopf algebras [M]. New York: Benjamin, 1969.
[9] Alonso Álvarez J N, González Rodríguez R, Fernández Vilaboa J M, et al. Weak Hopf algebras with projection and weak smash bialgebra structures [J]. J Algebra, 2003, 269(2): 701-725.

Memo

Memo:
Biographies: Zhou Xuan(1983—), female, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang2002@yahoo.com.
Foundation items: The National Natural Science Foundation of China(No.10871042), the Natural Science Foundation of Jiangsu Province(No.BK2009258).
Citation: Zhou Xuan, Liu Ling, Wang Shuanhong.Duality theorem for smash coproduct over quantum groupoids[J].Journal of Southeast University(English Edition), 2010, 26(4):647-650.
Last Update: 2010-12-20