|Table of Contents|

[1] Zeng Yuedi, Chen Jianlong,. On Gorenstein FP-injective modules [J]. Journal of Southeast University (English Edition), 2011, 27 (1): 115-118. [doi:10.3969/j.issn.1003-7985.2011.01.024]
Copy

On Gorenstein FP-injective modules()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 1
Page:
115-118
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-03-30

Info

Title:
On Gorenstein FP-injective modules
Author(s):
Zeng Yuedi Chen Jianlong
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
coherent ring Gorenstein FP-injective dimension Gorenstein FP-injective precover Gorenstein FP-injective preenvelope
PACS:
O153.39
DOI:
10.3969/j.issn.1003-7985.2011.01.024
Abstract:
An R-module M is called Gorenstein FP-injective if there is an exact sequence …→E1E0E0E1→… of FP-injective R-modules with M=ker(E0E1)and such that Hom(E, -)leaves the sequence exact whenever E is an FP-injective R-module. Some properties of Gorenstein FP-injective are obtained. Moreover, it is proved that a ring is left Noetherian if and only if every Gorenstein FP-injective left R-module is Gorenstein injective. Furthermore, it is shown that over an n-FC and perfect ring R, a left R-module M is Gorenstein FP-injective if and only if MFH for some FP-injective left R-module F and some strongly Gorenstein FP-injective R-module H. In view of this, Gorenstein FP-injective precovers and Gorenstein FP-injective preenvelopes are considered.

References:

[1] Maddox B H. Absolutely pure module[J]. Proc Amer Math Soc, 1967, 18: 155-158.
[2] Stenstrǒm B. Coherent rings and FP-injective modules[J]. J London Math Soc, 1970, 2(2): 323-329.
[3] Enochs E E. Injective and flat covers, envelopes and resolvents[J]. Israel J Math, 1981, 39(3): 189-209.
[4] Pinzon K R. Absolutely pure covers[J]. Comm Algebra, 2008, 36(6): 2186-2194.
[5] Enochs E E, Jenda O M G. Relative homological algebra[M]. Belrin: Walter de Gruyter, 2000.
[6] Ding N Q, Chen J L. Coherent rings with finite self-FP-injective dimension[J]. Comm Algebra, 1996, 24(9): 2963-2980.
[7] Enochs E E, Jenda O M G, Lopez-Ramos J A. The existence of Gorenstein flat covers[J]. Math Scand, 2004, 94(1): 46-62.
[8] Holm H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189(1/2/3): 167-193.
[9] Mao L X, Ding N Q. Gorenstein FP-injective and Gorenstein flat modules[J]. J Algebra and Its Appl, 2008, 7(4): 491-506.
[10] Megibben C. Absolutely pure module[J]. Proc Amer Math Soc, 1970, 26: 561-566.
[11] Anderson F W, Fuller K R. Rings and categories of modules[M]. Berlin: Springer-Verlag, 1992.
[12] Mao L X, Ding N Q. FI-injective and FI-flat modules[J]. J Algebra, 2007, 309(1): 367-385.
[13] Xu J. Flat covers of modules[C]//Lecture Notes in Math. Berlin: Springer-Verlag, 1996.
[14] Rotman J J. An introduction to homological algebra[M]. New York: Academic Press, 1979.
[15] Bennis D, Mahdou N. Global Gorenstein dimensions[J]. Proc Amer Math Soc, 2010, 138(2):461-465.
[16] Goodearl K R. Ring theory: nonsingular rings and modules[M]. New York: Marcel Dekker Inc, 1976.

Memo

Memo:
Biographies: Zeng Yuedi(1983—), female, graduate; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.10971024), Specialized Research Fund for the Doctoral Program of Higher Education(No.200802860024).
Citation: Zeng Yuedi, Chen Jianlong. On Gorenstein FP-injective modules[J].Journal of Southeast University(English Edition), 2011, 27(1):115-118.[doi:10.3969/j.issn.1003-7985.2011.01.024]
Last Update: 2011-03-20