|Table of Contents|

[1] Gui Zhiguo, Zhang Hui, Chen Beijing, Shu Huazhong, et al. Construction of a complete set of similarity invariantsusing pseudo-Zernike moments [J]. Journal of Southeast University (English Edition), 2011, 27 (2): 148-153. [doi:10.3969/j.issn.1003-7985.2011.02.007]
Copy

Construction of a complete set of similarity invariantsusing pseudo-Zernike moments()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 2
Page:
148-153
Research Field:
Computer Science and Engineering
Publishing date:
2011-06-30

Info

Title:
Construction of a complete set of similarity invariantsusing pseudo-Zernike moments
Author(s):
Gui Zhiguo1 Zhang Hui2 Chen Beijing2 Shu Huazhong2
1National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China
2Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
Keywords:
pseudo-Zernike moments completeness similarity invariant image reconstruction
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2011.02.007
Abstract:
To resolve the completeness and independence of an invariant set derived by the traditional method, a systematic method for deriving a complete set of pseudo-Zernike moment similarity(translation, scale and rotation)invariants is described. First, the relationship between pseudo-Zernike moments of the original image and those of the image having the same shape but distinct orientation and scale is established. Based on this relationship, a complete set of similarity invariants can be expressed as a linear combination of the original pseudo-Zernike moments of the same order and lower order. The problem of image reconstruction from a finite set of the pseudo-Zernike moment invariants(PZMIs)is also investigated. Experimental results show that the proposed PZMIs have better performance than complex moment invariants.

References:

[1] Hu M K. Visual pattern recognition by moment invariants [J]. IRE Trans Inf Theory, 1962, 8: 179-187.
[2] Flusser J, Suk T. Pattern recognition by affine moment invariants [J]. Pattern Recognit, 1993, 26(1): 167-174.
[3] Teague M. Image analysis via the general theory of moments [J]. J Opt Soc Am, 1980, 70(8): 920-930.
[4] Teh C H, Chin R T. On image analysis by the method of moments [J]. IEEE Trans Pattern Anal Mach Intel, 1988, 10(4): 496-513.
[5] Luo L M, Hamitouche C, Dilleseger J L, et al. A moment-based three-dimensional edge operator [J]. IEEE Trans Biomed Eng, 1993, 40(7): 693-703.
[6] Luo L M, Xie X H, Bao X D. A modified moment-based edge operator for rectangular pixel image [J]. IEEE Trans Circuits Systems Video Technol, 1994, 4(6): 552-554.
[7] Tuceryan M. Moment-based texture segmentation [J]. Pattern Recognit Lett, 1994, 15(7): 115-123.
[8] Ghorbel F, Derrode S, Mezhoud R, et al. Image reconstruction from a complete set of similarity invariants extracted from complex moments [J]. Pattern Recognit Lett, 2006, 27(12): 1361-1369.
[9] Crimmins T R. A complete set of Fourier descriptors for two dimensional shape [J]. IEEE Trans Syst Man Cybernet, 1982, 121(6): 848-855.
[10] Flusser J. On the independence of rotation moment invariants [J]. Pattern Recognit, 2000, 33(9): 1405-1410.
[11] Flusser J. On the inverse problem of rotation moment invariants [J]. Pattern Recognit, 2002, 35(12):3015-3017.
[12] Derrode S, Mezhoud R, Ghorbel F. Comparison between two complete sets of shape descriptors for 2D gray-level object content based retrieval [J]. Ann Telecommun, 2000, 55(3/4): 184-193.(in French)
[13] Mukundan R, Ramakrishnan K R. Moment functions in image analysis — theory and applications [M]. Singapore: World Scientific, 1998: 60-60.
[14] Petkovsek M, Wilf H S, Zeilberger D. A=B [M]. Wellesley, Massachusetts: AK Peters, Ltd, 1996.
[15] Nene S A, Nayar S K, Murase H. Columbia University Image Library(COIL-100)[EB/OL].(2007-08-30)[2011-01-03]. http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php.

Memo

Memo:
Biography: Gui Zhiguo(1972—), male, doctor, professor, gui_zg@163.com.
Foundation item: The National Natural Science Foundation of China(No.61071192, 61073138).
Citation: Gui Zhiguo, Zhang Hui, Chen Beijing, et al.Construction of a complete set of similarity invariants using pseudo-Zernike moments[J].Journal of Southeast University(English Edition), 2011, 27(2):148-153.[doi:10.3969/j.issn.1003-7985.2011.02.007]
Last Update: 2011-06-20