[1] Transportation Research Board. Highway capacity manual [M]. Washington DC, USA: National Research Council, 2001.
[2] Hall F L, Wakefield S, Al-Kaisy A. Freeway quality of service: what really matters to drivers and passengers? [J].Transportation Research Board, 2001(1776):17-23.
[3] Hall F L, Hurdle V F, Banks J H. A synthesis of recent work on the nature of speed-flow and flow-occupancy(or density)relationships on freeways [J]. Transportation Research Record, 1992(1365):12-18.
[4] Helbing D, Hennecke A, Treiber M. Phase diagram of traffic states in the presence of inhomogeneities [J]. Physics Review Letters, 1999, 82(21):4360-4363.
[5] Kerner B S, Rehborn H. Experimental properties of complexity in traffic flow [J]. Physics Review E, 1996, 53(5): 4275-4278.
[6] Chasey A D, de la Garza J M, Drew D R. Comprehensive level of service: needed approach for civil infrastructure systems[J].Journal of Infrastructure Systems, 1997, 3(4):143-153.
[7] Hua J, Faghri A. Dynamic traffic pattern classification using artificial neural networks[J].Transportation Research Record, 1993(1399):14-19.
[8] Mead W C, Fisher H N, Jones R D, et al. Application of adaptive and neural network computational techniques to traffic volume and classification monitoring [J]. Transportation Research Record, 1994(1466):116-123.
[9] Lingras P. Classifying highways: hierarchical grouping versus Kohonen neural networks [J]. Journal of Transportation Engineering, 1995, 121(4):364-368.
[10] Saito M, Fan J. Multilayer artificial neural networks for level-of-service analysis of signalized intersections [J]. Transportation Research Record, 1999(1678):216-224.
[11] Yang H, Qiao F. Neural network approach to classification of traffic flow states [J]. Journal of Transportation Engineering, 1998, 124(6):521-525.
[12] Kikuchi S, Chakroborty P. Ways to treat uncertainty in level of service determination[C]//The 83rd Annual Meeting of Transportation Research Board. Washington DC, USA, 2003.
[13] Mitchell T. Machine learning [M]. McGraw Hill, 1997.
[14] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction [M]. Springer-Verlag, 2001.
[15] Shekar S, Lu C T, Chawla S, et al. Data mining and visualization of twin-cities traffic data, TR 01-015 [R]. Twin Cities, MN, USA: Department of CSE, University of Minnesota, 2000.
[16] Oh C, Ritchie S. Real-time inductive-signature-based level of service for signalized intersections [J]. Transportation Research Record, 2002(1802):97-104.
[17] Klodzinski J, Al-Deek H M. New methodology for defining level of service at toll plazas[J].Journal of Transportation Engineering, ASCE, 2002, 128(2):173-181.
[18] Sun L, Yang J, Mahmassani H, et al. Data mining based adaptive regression for developing equilibrium static traffic speed-density relationships [J]. Canadian Journal of Civil Engineering, 2010, 37(3):389-400.
[19] Hartigan J A. Clustering algorithms [M]. New York: Wiley, 1975.
[20] Hartigan J A, Wong M A. A K-means clustering algorithm [J]. Applied Statistics, 1979, 28:100-108.
[21] Duda R O, Hart P E, Stork D G. Pattern classification [M]. 2nd ed. New York: John Wiley & Sons, Inc., 2001.
[22] Gordon A D. Classification [M]. 2nd ed. London: Chapman & Hall/CRC, 1999.
[23] Rencher A C. Methods of multivariate analysis [M]. John Wiley & Sons, 2002.
[24] Sun L, Zhou J. Development of multiregime speed-density relationships by cluster analysis [J]. Transportation Research Record, 2005(1934): 64-71.
[25] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm(with discussion)[J]. Journal of the Royal Statistical Society, Series B, 1977, 39(1):1-38.
[26] Witten I H, Frank E. Data mining: practical machine learning tools and techniques [M]. 2nd ed. Morgan Kaufmann, 2005.
[27] StatSoft Inc. Electronic textbook: cluster analysis [EB/OL].(2006)[2010-06-20]. www.statsoft.com/textbook/.
[28] TransGuide Program. The advanced traffic management system(ATMS)at San Antonio[EB/OL].(2006)[2010-06-20]. http://www.transguide.dot.state.tx.us/.
[29] Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a dataset via the gap statistic[J]. Journal of the Royal Statistical Society, Series B, 2001, 63(2): 411-423.