|Table of Contents|

[1] Zhuang Guifen, Chen Jianlong,. Drazin invertibility for matrices over an arbitrary ring [J]. Journal of Southeast University (English Edition), 2011, 27 (2): 230-232. [doi:10.3969/j.issn.1003-7985.2011.02.025]
Copy

Drazin invertibility for matrices over an arbitrary ring()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 2
Page:
230-232
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-06-30

Info

Title:
Drazin invertibility for matrices over an arbitrary ring
Author(s):
Zhuang Guifen Chen Jianlong
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
ring generalized factorization Drazin inverse group inverse
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2011.02.025
Abstract:
In order to study the Drazin invertibility of a matrix with the generalized factorization over an arbitrary ring, the necessary and sufficient conditions for the existence of the Drazin inverse of a matrix are given by the properties of the generalized factorization. Let T=PAQ be a square matrix with the generalized factorization, then T has Drazin index k if and only if k is the smallest natural number such that Akk is regular and Ukk(Vkk)is invertible if and only if k is the smallest natural number such that Akk is regular and(~overU)kk((~overV)kk)is invertible if and only if k is the smallest natural number such that Akk is regular and(^overU)kk((^overV)kk)is invertible. The formulae to compute the Drazin inverse are also obtained. These results generalize recent results obtained for the Drazin inverse of a matrix with a universal factorization.

References:

[1] Chen J L. A note on generalized inverses of a product[J]. Northeast Math J, 1996, 12(4):431-440.
[2] Gouveia M C, Puystjens R. About the group inverse and Moore-Penrose inverse of a product[J]. Linear Algebra Appl, 1991, 150:361-369.
[3] Chen J L. Group inverses and Drazin inverses of matrices over rings[J]. Acta Math Sinica, 1994, 37(3):375-380.
[4] Jiang S Y, Liu X J. Generalized inverses of morphisms with universal-factorization[J]. Acta Math Sinica, 1999, 42(2):233-240.
[5] Chen J, Chen J L. On generalized inverses of morphisms with generalized-factorization[J], Acta Math Sinica, 2001, 44(5):909-916.
[6] Chen J L, Wei Y M. On characterizations of Drazin inverse[J], Northeast Math J, 2006, 22(1):15-20.
[7] Puystjens R, Gouveia M C. Drazin invertibility for matrices over an arbitrary ring[J]. Linear Algebra Appl, 2004, 385:105-116.
[8] Patricio P, Puystjens R. Generalized invertibility in two semigroups of a ring[J]. Linear Algebra Appl, 2004, 377:125-139.

Memo

Memo:
Biographies: Zhuang Guifen(1977—), female, graduate; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.10571026, 10871051), Specialized Research Fund for the Doctoral Program of Higher Education(No.20060286006, 200802860024).
Citation: Zhuang Guifen, Chen Jianlong.Drazin invertibility for matrices over an arbitrary ring[J].Journal of Southeast University(English Edition), 2011, 27(2):230-232.[doi:10.3969/j.issn.1003-7985.2011.02.025]
Last Update: 2011-06-20