|Table of Contents|

[1] Yang Li, Yang FangChen Ping, Gu Ning,. Effect of viscoelasticity on nonlinear vibration of single microbubble [J]. Journal of Southeast University (English Edition), 2011, 27 (3): 253-256. [doi:10.3969/j.issn.1003-7985.2011.03.005]
Copy

Effect of viscoelasticity on nonlinear vibration of single microbubble()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 3
Page:
253-256
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-09-30

Info

Title:
Effect of viscoelasticity on nonlinear vibration of single microbubble
Author(s):
Yang Li Yang FangChen Ping Gu Ning
State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
Keywords:
microbubble viscoelasticity radial oscillation harmonic imaging
PACS:
O422.7
DOI:
10.3969/j.issn.1003-7985.2011.03.005
Abstract:
Based on the Church-Hoff model, the nonlinear oscillations of a single encapsulated microbubble with a finite thickness shell are theoretically studied. The effects of viscoelasticity on radial oscillations and the fundamental and harmonic components are researched. The peaks of radial oscillations and magnitudes of power spectra of the fundamental and harmonic components all increase gradually with the shear modulus of shell varying from 0 to 10 MPa by an interval of 0.1 MPa at the same shear viscosity, while they decrease as the shear viscosity increases from 0 to 1 Pa·s by an interval of 0.01 Pa·s at the same shear modulus. The fluctuation ranges of subharmonic and ultraharmonic signals are much larger than both the fundamental and second harmonic components. It means that the effect of viscoelasticity on the subharmonic and ultraharmonic signals is greater than that on the fundamental and second harmonic components. So adjusting the viscoelasticity of the shell is a potential method to obtain a perfect microbubble contrast agent used for the subharmonic and ultraharmonic imaging. Four points with significant fundamental and harmonic components are chosen as an example: a shear viscosity of 0.39 Pa·s with shear modulus of 3.9, 6.6, and 8.6 MPa, respectively; a shear modulus of 6.6 MPa with a shear viscosity of 0.42Pa·s.

References:

[1] Goldberg B B, Liu J B, Forsberg F. Ultrasound contrast agents:a review [J]. Ultrasound Med Biol, 1994, 20(4): 319-333.
[2] Forsberg F, Shi W T, Goldberg B B. Subharmonic imaging of contrast agents [J]. Ultrasonics, 2000, 38(1/2/3/4/5/6/7/8): 93-98.
[3] Maikusa N, Fukami T, Yuasa T, et al. Fundamental study on subharmonic imaging by irradiation of amplitude-modulated ultrasound waves [J]. J Acoust Soc Am, 2007, 122(1): 672-676.
[4] Cheung K, Couture O, Bevan P D, et al. In vitro characterization of the subharmonic ultrasound signal from definity microbubbles at high frequencies [J]. Phys Med Biol, 2008, 53(5): 1209-1223.
[5] Patil A V, Reynolds P, Hossack J A. A nonlinear three-dimensional model for quantifying microbubble dynamics [J]. J Acoust Soc Am, 2010, 127(2): 80-86.
[6] Shen C C, Yeh C K, Chen W S, et al. The effect of third harmonic transmit phasing on contrast agent responses for CTR improvement [J]. Phys Med Biol, 2008, 53(21): 6179-6194.
[7] Basude R, Wheatley M A. Generation of ultraharmonics in surfactant based ultrasound contrast agents: use and advantages [J]. Ultrasonics, 2001, 39(6): 437-444.
[8] Shi W T, Forsberg F. Ultrasound characterization of the nonlinear properties of contrast microbubbles [J]. Ultrasound Med Biol, 2000, 26(1): 93-104.
[9] Postema M, Schmitz G. Ultrasonic bubbles in medicine: influence of the shell [J]. Ultrasonics Sonochemistry, 2007, 14(4): 438-444.
[10] Yang F, Gu A Y, Chen Z P, et al. Multiple emulsion microbubbles for ultrasound imaging [J]. Materials Letters, 2008, 62(1): 121-124.
[11] Church C C. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles [J]. J Acoust Soc Am, 1995, 97(3): 1510-1521.
[12] Hoff L, Sontum P C, Hovem J M. Oscillations of polymeric microbubbles: effect of the encapsulating shell [J]. J Acoust Soc Am, 2000, 107(4): 2272-2280.
[13] Katiyar A, Sarkar K, Forsberg F. Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure[J]. J Acoust Soc Am, 2011, 129(4): 2325-2335.

Memo

Memo:
Biographies: Yang Li(1986—), female, graduate; Gu Ning( corresponding author ), male, doctor, professor, guning@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2011CB933503), the National Natural Science Foundation of China( No.50872021, 60725101, 31000453 ).
Citation: Yang Li, Yang Fang, Chen Ping, et al. Effect of viscoelasticity on nonlinear vibration of single microbubble[J].Journal of Southeast University(English Edition), 2011, 27(3):253-256.[doi:10.3969/j.issn.1003-7985.2011.03.005]
Last Update: 2011-09-20