[1] Goldberg B B, Liu J B, Forsberg F. Ultrasound contrast agents:a review [J]. Ultrasound Med Biol, 1994, 20(4): 319-333.
[2] Forsberg F, Shi W T, Goldberg B B. Subharmonic imaging of contrast agents [J]. Ultrasonics, 2000, 38(1/2/3/4/5/6/7/8): 93-98.
[3] Maikusa N, Fukami T, Yuasa T, et al. Fundamental study on subharmonic imaging by irradiation of amplitude-modulated ultrasound waves [J]. J Acoust Soc Am, 2007, 122(1): 672-676.
[4] Cheung K, Couture O, Bevan P D, et al. In vitro characterization of the subharmonic ultrasound signal from definity microbubbles at high frequencies [J]. Phys Med Biol, 2008, 53(5): 1209-1223.
[5] Patil A V, Reynolds P, Hossack J A. A nonlinear three-dimensional model for quantifying microbubble dynamics [J]. J Acoust Soc Am, 2010, 127(2): 80-86.
[6] Shen C C, Yeh C K, Chen W S, et al. The effect of third harmonic transmit phasing on contrast agent responses for CTR improvement [J]. Phys Med Biol, 2008, 53(21): 6179-6194.
[7] Basude R, Wheatley M A. Generation of ultraharmonics in surfactant based ultrasound contrast agents: use and advantages [J]. Ultrasonics, 2001, 39(6): 437-444.
[8] Shi W T, Forsberg F. Ultrasound characterization of the nonlinear properties of contrast microbubbles [J]. Ultrasound Med Biol, 2000, 26(1): 93-104.
[9] Postema M, Schmitz G. Ultrasonic bubbles in medicine: influence of the shell [J]. Ultrasonics Sonochemistry, 2007, 14(4): 438-444.
[10] Yang F, Gu A Y, Chen Z P, et al. Multiple emulsion microbubbles for ultrasound imaging [J]. Materials Letters, 2008, 62(1): 121-124.
[11] Church C C. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles [J]. J Acoust Soc Am, 1995, 97(3): 1510-1521.
[12] Hoff L, Sontum P C, Hovem J M. Oscillations of polymeric microbubbles: effect of the encapsulating shell [J]. J Acoust Soc Am, 2000, 107(4): 2272-2280.
[13] Katiyar A, Sarkar K, Forsberg F. Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure[J]. J Acoust Soc Am, 2011, 129(4): 2325-2335.