|Table of Contents|

[1] Liao Yihua, Chen Jianlong,. Dual pairs of tilting pairs [J]. Journal of Southeast University (English Edition), 2011, 27 (3): 347-350. [doi:10.3969/j.issn.1003-7985.2011.03.024]
Copy

Dual pairs of tilting pairs()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 3
Page:
347-350
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2011-09-30

Info

Title:
Dual pairs of tilting pairs
Author(s):
Liao Yihua1 2 Chen Jianlong1
1Department of Mathematics, Southeast University, Nanjing 211189, China
2College of Mathematics and Information Science, Guangxi University, Nanning 530004, China
Keywords:
selforthogonal module selfinjective dual module tilting pair
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2011.03.024
Abstract:
A module pair(C, T)over an Artin algebra Λ is called a tilting pair if both C and T are selforthogonal modules and the conditions T∈ad(^overd)C and C∈ad(ˇoverd)T hold. The duality on a tilting pair is investigated to discuss the condition under which the dual of a tilting pair is also a tilting pair. A necessary and sufficient condition of(D(T), D(C))being an n-tilting pair over an Artin algebra for an n-tilting pair(C, T)is given. And, a necessary and sufficient condition of(T*, C*)being an n-tilting pair over a selfinjective Artin algebra for an n-tilting pair(C, T)is also given.

References:

[1] Morita K. Duality of modules and its applications to the theory of rings with minimum condition [J]. Sci Rep Tokyo Kyoiku Daigaku, Sect A, 1958, 6(1): 83-142.
[2] Azumaya G. A duality theory for injective modules[J]. Amer J Math, 1959, 81(1): 249-278.
[3] Miyashita Y. Tilting modules associated with a series of idempotent ideals [J]. J Algebra, 2001, 238(2): 485-501.
[4] Wei J Q, Xi C C. A characterization of the tilting pair [J]. J Algebra, 2007, 317(1): 376-391.
[5] Wei J Q, Xi C C. Auslander-Reiten correspondence for tilting pairs [J]. J Pure Appl Algebra, 2008, 212(2): 411-422.
[6] Auslander M, Reiten I. Applications of contravariantly finite subcategories [J]. Adv Math, 1991, 86(1): 111-152.
[7] Auslander M, Reiten I, Smalø S O. Representation theory of Artin algebras [M]. London: Cambridge University Press, 1997.
[8] Colby R R, Fuller K R. Equivalence and duality for module categories(with tilting and cotilting for rings)[M]. London: Cambridge University Press, 2004.
[9] Skowronski A, Yamagata K. Stable equivalence of selfinjective Artin algebras of Dynkin type [J]. Alg Repr Theory, 2006, 9(1): 33-45.

Memo

Memo:
Biographies: Liao Yihua(1963—), male, graduate; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.10971024), the Specialized Research Fund for the Doctoral Program of Higher Education( No.200802860024), the Natural Science Foundation of Jiangsu Province(No.BK2010393), Scientific Research Foundation of Guangxi University(No.XJZ100246).
Citation: Liao Yihua, Chen Jianlong. Dual pairs of tilting pairs[J].Journal of Southeast University(English Edition), 2011, 27(3):347-350.[doi:10.3969/j.issn.1003-7985.2011.03.024]
Last Update: 2011-09-20