[1] Tikhonov A, Arsenin V. Solution of ill-posed problems[M]. Washington, DC: Winston, 1977.
[2] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60(1/2/3/4): 259-268.
[3] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685.
[4] Shah J. A common framework for curve evolution, segmentation and anisotropic diffusion[C]//Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, 1996: 136-142.
[5] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.
[6] Dobson D, Santosa F. Recovery of blocky images from noisy and blurred data[J]. SIAM Journal on Applied Mathematics, 1996, 56(4): 1181-1198.
[7] Rudin L I, Osher S. Total variation based image restoration with free local constraints[C]//Proceedings of the First International Conference on Image Processing. Budapest, Hungary, 1994, 1: 31-35.
[8] Elad M. Why simple shrinkage is still relevant for redundant representations?[J].IEEE Transactions on Information Theory, 2006, 52(12): 5559-5569.
[9] Elad M, Matalon B, Zibulevsky M. Image denoising with shrinkage and redundant representations[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, 2: 1924-1931.
[10] Starck J L, Candès E, Donoho D. Astronomical image representation by the curvelet transform[J]. Astronomy and Astrophysics, 2003, 398(2): 785-800.
[11] Vogel C R, Oman M E. Iterative methods for total variation denoising[J]. SIAM Journal on Scientific Computing, 1996, 17(1): 227-238.
[12] Vogel C R, Oman M E. Fast, robust total variation based reconstruction of noisy, blurred images[J]. IEEE Transactions on Image Processing, 1998, 7(6): 813-824.
[13] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Image Sciences, 2009, 2(1): 183-202.
[14] Wang Y, Yang J, Yin W, et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Image Sciences, 2008, 1(3): 948-951.
[15] Hestenes M R. Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications, 1969, 4(5): 303-320.
[16] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite-element approximations[J]. Computers and Mathematics with Applications, 1976, 2(1): 17-40.
[17] Glowinski R. Numerical methods for nonlinear variational problems[M]. New York: Springer-Verlag, 1984.
[18] Glowinski R, Tallec P L. Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[M]. Philadelphia: SIAM, 1989.
[19] He B S, Yang H. Some convergence properties of method of multipliers for linearly constrained monotone variational in-equalities[J]. Operations Research Letters, 1999, 23(3/4/5): 151-161.
[20] Ng M K, Chan R H, Tang W C. A fast algorithm for deblurring models with Neumann boundary conditions[J]. SIAM Journal on Scientific Computing, 1999, 21(3): 851-866.