|Table of Contents|

[1] Liu Haifeng, Ning Jianguo,. Constitutive model for concrete subjected to impact loading [J]. Journal of Southeast University (English Edition), 2012, 28 (1): 79-84. [doi:10.3969/j.issn.1003-7985.2012.01.014]
Copy

Constitutive model for concrete subjected to impact loading()
冲击载荷作用下混凝土本构模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
28
Issue:
2012 1
Page:
79-84
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2012-03-30

Info

Title:
Constitutive model for concrete subjected to impact loading
冲击载荷作用下混凝土本构模型
Author(s):
Liu Haifeng1 Ning Jianguo2
1Department of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
2State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
刘海峰1 宁建国2
1宁夏大学土木与水利工程学院, 银川750021; 2北京理工大学爆炸科学与技术国家重点实验室, 北京100081
Keywords:
concrete micromechanics dynamic constitutive model impact loading
混凝土 细观力学 动态本构模型 冲击荷载
PACS:
O347
DOI:
10.3969/j.issn.1003-7985.2012.01.014
Abstract:
To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Mori-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases.
为了更好地设计和分析混凝土结构, 对冲击荷载作用下混凝土材料的力学特性进行了研究.将混凝土材料看成实体和微裂纹组成的复合材料, 其中实体由粗骨料和水泥砂浆基体组成.假设水泥砂浆基体为弹性的、均匀的和各向同性的.基于Mori-Tanaka理论和Eshelby 等效夹杂理论建立了冲击荷载作用下混凝土材料的动态本构模型.同时, 进行了混凝土和水泥砂浆的冲击压缩试验.实验表明:混凝土和水泥砂浆都是率相关材料.在相同的冲击速度下, 混凝土比水泥砂浆具有更高的承载能力, 但混凝土的最大应变低于水泥砂浆材料.不论混凝土材料还是水泥砂浆材料, 随着冲击速度的提高, 破坏实验后试件的尺寸都逐渐减小.

References:

[1] Malvern L E, Jenkins D A, Tang T X, et al. Dynamic compressive testing of concrete[C]// Proceedings of Second Symposium on the Interaction of Non-Nuclear Munitions with Structures. Panama City Beach, FL, USA, 1984:194-199.
[2] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9):869-886.
[3] Ross C A, Tedesco J W, Kuennen S T. Effects of strain rate on concrete strength[J]. ACI Materials Journal, 1995, 92(1):37-47.
[4] Bischoff P H, Perry S H. Impact behavior of plain concrete in uniaxial compression[J]. Journal of Engineering Mechanics, 1995, 121(6):685-693.
[5] Ning J G, Shang L, Sun Y X. Investigation on impact behavior of concrete[J]. Acta Mechanica Sinica, 2006, 38(2):199-208.
[6] Bhatti A Q, Kishi N. Constitutive model for absorbing system of RC girders used in rock-sheds under falling weight impact loading test[J]. Journal of Nuclear Engineering and Design, 2010, 240(10):2626-2632.
[7] Georgin J F, Reynouard J M. Modeling of structures subjected to impact: concrete behavior under high strain rate[J]. Cement and Concrete Composites, 2003, 25(1):131-143.
[8] Morit T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusions[J]. Acta Metallurgica et Materialia, 1973, 21(5):571-574.
[9] Eshelby J D. The Determination of the elastic field of an ellipsoidal inclusion and related problems[J]. Proceedings of the Royal Society A, 1957, 241(1226):376-396.
[10] Ravichandran G, Subhash G. A micromechanical model for high strain rate behavior of ceramics[J]. International Journal of Solids and Structures, 1995, 32(17/18):2627-2646.
[11] Deng H, Nemat-Nasser S. Dynamic damage evolution in brittle microcracking solids[J]. Mechanics of Materials, 1992, 14(2):83-103.
[12] Nemat-Nasser S, Obata N. A microcrack model of dilatancy in brittle materials[J]. Journal of Applied Mechanics, 1988, 55(2):24-35.
[13] Huang C Y, Subhash C, Vitton S J. A dynamic damage growth model for uniaxial compressive response of rock aggregates[J]. Mechanics of Materials, 2002, 34(5):267-277.
[14] Horii H, Nemat-Nasser S. Elastic fields of interaction inhomogeneities[J]. International Journal of Solids and Structures, 1985, 21(7):731-745.
[15] Freund L B, Hutchinson J W. High strain-rate crack growth in rate-dependent plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1985, 33(2): 169-191.
[16] Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Science, 1980, 17(1):147-157.
[17] Wang D R. Research on numerical simulation and engineering analysis methods of penetration phenomenon at high speed[D]. Hefei: Department of Mechanics of University of Science and Technology of China, 2002:44-46.(in Chinese)
[18] Wang D. Fracture mechanics[M]. Harbin: Harbin Institute of Technology Press, 1989:16-18.(in Chinese)

Memo

Memo:
Biography: Liu Haifeng(1975—), male, doctor, liuhaifeng1557@163.com.
Foundation items: The National Natural Science Foundation of China(No.11162015), the Natural Science Foundation of Ningxia Hui Autonomous Region(No.NZ1106).
Citation: Liu Haifeng, Ning Jianguo. Constitutive model for concrete subjected to impact loading[J].Journal of Southeast University(English Edition), 2012, 28(1):79-84.[doi:10.3969/j.issn.1003-7985.2012.01.014]
Last Update: 2012-03-20