|Table of Contents|

[1] Sun Lu, Ge Minli, Gu Wenjun, et al. Characterizing uncertainty in pavement performance prediction [J]. Journal of Southeast University (English Edition), 2012, 28 (1): 85-93. [doi:10.3969/j.issn.1003-7985.2012.01.015]
Copy

Characterizing uncertainty in pavement performance prediction()
路面性能预测中不确定性的量化
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
28
Issue:
2012 1
Page:
85-93
Research Field:
Traffic and Transportation Engineering
Publishing date:
2012-03-30

Info

Title:
Characterizing uncertainty in pavement performance prediction
路面性能预测中不确定性的量化
Author(s):
Sun Lu1 2 Ge Minli1 Gu Wenjun1 Xu Bing1
1School of Transportation, Southeast University, Nanjing 210096, China
2Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA
孙璐1 2 葛敏莉1 顾文钧1 徐冰1
1东南大学交通学院, 南京210096; 2Department of Civil Engineering, Catholic University of America, Washington DC 20064, USA
Keywords:
-
路面性能 不确定性 预测 蒙特卡洛数值模拟
PACS:
U418.6
DOI:
10.3969/j.issn.1003-7985.2012.01.015
Abstract:
Taking variability and uncertainty involved in performance prediction into account, in order to make the prediction reliable and meaningful, a distribution-based method is developed to predict future PSI. This method, which is based on the AASHTO pavement performance model, treats predictor variables as random variables with certain probability distributions and obtains the distribution of future PSI through the method of Monte-Carlo simulation. A computer program PERFORM using Monte Carlo simulation is developed to implement the numerical computation. Simulation results based on pavement and traffic parameters show that traffic, surface layer material property, and initial pavement performance are the most significant factors affecting pavement performance. Once the distribution of future PSI is determined, statistics such as the mean and the variance of future PSI are readily available.
考虑到路面性能预测中存在的大量可变性和不确定性, 为使得路面性能PSI的预测结果可信且有意义, 提出了一种基于分布的路面性能指标PSI预测方法.该方法建立在AASHTO路面性能预测模型基础上, 把预测变量处理成具有某种概率分布的随机变量, 通过蒙特卡洛数值模拟获得PSI的概率分布.基于路面结构和交通参数建立仿真模型, 应用PERFORM程序得到数值计算结果.研究结果表明:交通荷载、表面层材料特性和路面初始性能是影响未来路面性能的最主要因素.在获得路面性能PSI指标的概率分布后, 其他统计量如未来路面性能的均值函数和方差函数可以很容易得到.

References:

[1] Hudson W R, Hass R, Uddin W. Infrastructure management[M]. McGraw Hill, 1997.
[2] Irrgang F C, Maze T H. Status of pavement management systems and data analysis models at state highway agencies [J]. Transportation Research Record, 1993(1397): 1-6.
[3] National Quality Initiative Steering Committee. National highway user survey [R]. Washington DC:National Quality Initiative Steering Committee, 1996.
[4] National Quality Initiative Steering Committee. National highway user survey [R]. Washington DC:National Quality Initiative Steering Committee, 2001.
[5] National Quality Initiative Steering Committee. National highway user survey [R]. Washington DC:National Quality Initiative Steering Committee, 2002.
[6] National Academy of Sciences. The AASHO road test, pavement research, Special Report 61E [R]. Washington DC: Highway Research Board, National Academy of Sciences, 1962.
[7] American Association of State Highway and Transportation Officials. AASHTO guide for design of pavement structures[R]. Washington DC: American Association of State Highway and Transportation Officials, 1993.
[8] Darter M L, Hudson W R. Probabilistic design concepts applied to flexible pavement system design, Report No.123-18 [R]. Austin, TX, DSA: University of Texas at Austin, 1973.
[9] Haas R, Hudson W R, Zaniewski J P. Modern pavement management [M]. Malabar, FL, USA: Krieger Publishing Co., 1994.
[10] Hudson W R. State-of-the-art in predicting pavement reliability from input variability, Report No. FAA-RD-75-207 [R]. Vicksburg: US Army Waterways Experiment Station, 1975.
[11] Cambridge Systematics, Inc. A guidebook for performance-based transportation planning, NCHRP Report 446 [R]. Washington DC: National Academy Press, 2000.
[12] Gillespie T D, Sayers M W, Segel L. Calibration of response-type road roughness measurement systems, NCHRP Report 228 [R]. Washington DC: National Cooperative Highway Research Program, 1980.
[13] Federal Highway Administration. VESYS 3A-M user manual [M]. Washington DC:Office of Research and Development, Federal Highway Administration, 1983.
[14] Alsherri A, George K P. Reliability model for pavement performance[J]. Journal of Transportation Engineering, ASCE, 1988, 114(5): 294-306.
[15] Jorge K P, Alsherri A, Shah N S. Reliability analysis of premium pavement design features[J]. Journal of Transportation Engineering, ASCE, 1988, 114(3): 278-293.
[16] Kenis W. Predicted design procedure for flexible pavement using the VESYS structural subsystem[C]//Proc Fourth Int Conf Struct Design of Asphalt Pavements. Ann Arbor, MI, USA: University of Michigan, 1977: 101-130.
[17] Kenis W, Wang W. Analysis of pavement structural variability, FHWA-RD-97-072 [R].Washington DC: Federal Highway Administration, 1997.
[18] Kher R K, Darter M I. Probabilistic concepts and their applications to AASHTO interim guide for design of rigid pavements[J]. Highway Research Record, 1973(466): 20-36.
[19] Lemer A C, Moavenzadeh F. Reliability of highway pavements[J]. Highway Research Record, 1971(362): 1-8.
[20] Sun L, Hudson W R, Zhang Z. Empirical-mechanistic method based stochastic modeling of fatigue damage to predict flexible pavement fatigue cracking for transportation infrastructure management [J]. Journal of Transportation Engineering, ASCE, 2003, 129(2): 109-117.
[21] Yoder E J, Witczak M W. Principles of pavement design[M]. New York: John Wiley & Sons, Inc, 1975.
[22] Draper N R, Smith H. Applied regression analysis[M]. 4th ed. New York: John Wiley & Sons, Inc, 1998.
[23] Johnston J, DiNardo J. Econometric methods[M]. 4th ed. McGraw-Hill, 1997.
[24] Wallace S W. Decision making under uncertainty: Is sensitive analysis of any use?[J]. Operations Research, 2000, 48(1): 20-25.
[25] Lehmer D H. Mathematical methods in large-scale computing units[J]. Annals of the Computation Laboratory of Harvard University, 1951, 26: 141-146.
[26] Law A M, Kelton W D. Simulation modeling and analysis[M]. 3rd ed. McGraw-Hill, Inc. 2000.
[27] Marsaglia G, Bray T A. A convenient method for generating normal variables[J]. SIAM Review, 1964, 6: 260-264.

Memo

Memo:
Biography: Sun Lu(1972—), male, doctor, professor, sunl@ cua.edu.
Foundation items: The US National Science Foundation(No.CMMI-0408390, CMMI-0644552), the American Chemical Society Petroleum Research Foundation(No.PRF-44468-G9), Chang Jiang Scholars Program, the Fok Ying-Tong Education Foundation(No.114024), the Natural Science Foundation of Jiangsu Province(No.SBK200910046), the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C).
Citation: Sun Lu, Ge Minli, Gu Wenjun, et al.Characterizing uncertainty in pavement performance prediction[J].Journal of Southeast University(English Edition), 2012, 28(1):85-93.[doi:10.3969/j.issn.1003-7985.2012.01.015]
Last Update: 2012-03-20