|Table of Contents|

[1] Liu Guohua, Zhou Xuan, Wang Shuanhong,. Constructing generalized Drinfel’d quantum double [J]. Journal of Southeast University (English Edition), 2012, 28 (1): 125-129. [doi:10.3969/j.issn.1003-7985.2012.01.021]
Copy

Constructing generalized Drinfel’d quantum double()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
28
Issue:
2012 1
Page:
125-129
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2012-03-30

Info

Title:
Constructing generalized Drinfel’d quantum double
Author(s):
Liu Guohua1 Zhou Xuan2 Wang Shuanhong1
1Department of Mathematics, Southeast University, Nanjing 211189, China
2School of Mathematics and Information Technology, Jiangsu Institute of Education, Nanjing 210013, China
Keywords:
twisted crossed product coquasitriangular Hopf algebra generalized Drinfel’d quantum double
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2012.01.021
Abstract:
Let H be a Hopf algebra and B an algebra with two linear maps σ, τ:HHB. The necessary and sufficient conditions for the twisted crossed product B#ττσσH equipped with the tensor product coalgebra structure to be a bialgebra are proved. Then, B#ττσσH is a coquasitriangular Hopf algebra under certain conditions. This coquasitriangular Hopf algerbra generalizes some known cross products. Finally, as an application, an explicit example is given.

References:

[1] Majid S. Braided momentum in the q-Poincare group[J]. J Math Phys, 1993, 34(5): 2045-2058.
[2] Wang S H, Li J Q. On the twisted smash product for bimodule algebras and Drinfel’d double[J]. Comm Algebra, 1998, 26(8): 2435-2444.
[3] Wang S H. On braided Hopf algebra structures over the twisted smash products[J]. Comm Algebra, 1999, 27(11): 5561-5573.
[4] Blattner R J, Cohen M, Montgomery S. Crossed product and inner actions of Hopf algebras [J]. Trans Amer Math Soc, 1986, 298(2): 671-711.
[5] Doi Y, Takeuchi M. Cleft comodule algebras by a bialgebra[J]. Comm Algebra, 1986, 14(5): 801-817.
[6] Kim E S, Park Y S, Yoon S. Bicrossproduct Hopf algebras[J]. Algebra Colloquium, 1999, 6(4):439-448.
[7] Wang S H, Wang D G, Yao Z P. Hopf algebra structure over crossed coproducts[J]. Southeast Asian Bulletin of Mathematics, 2000, 24(1): 105-113.
[8] Radford D E. The structure of Hopf algebras with a projection[J]. J Algebra, 1985, 92(2):322-347.
[9] Sweedler M E. Hopf algebras[M]. New York:Benjamin, 1969.
[10] Doi Y. Braided bialgebras and quadratic bialgebras[J]. Comm Algebra, 1993, 21(5):1731-1749.
[11] Brzeziński T. Crossed products by a coalgebra[J]. Comm Algebra, 1997, 25(11): 3551-3575.
[12] Doi Y, Takeuchi M. Multiplication alteration by two-cocycles—the quantum view[J]. Comm Algebra, 1994, 22(14):5715-5732.
[13] Lu J H. On the Drinfel’d double and the Heisenberg double of a Hopf algebra[J]. Duke Math J, 1994, 74(3):763-776.
[14] Zhou X, Liu G H. The structure of a class of generalized Hopf algebras[J]. J Nanjing Univ Mathematical Biquarterly, 2011, 28(1):42-49.

Memo

Memo:
Biography: Liu Guohua(1978—), female, doctor, lecturer, liuguohua@seu.edu.cn.
Citation: Liu Guohua, Zhou Xuan, Wang Shuanhong.Constructing generalized Drinfel’d quantum double.[J].Journal of Southeast University(English Edition), 2012, 28(1):125-129.[doi:10.3969/j.issn.1003-7985.2012.01.021]
Last Update: 2012-03-20