|Table of Contents|

[1] Chen Yeting, Shi Tingting, Qi Shanshan, Yang MuMeng Na, et al. Alkylpolyglycoside inducing poly(butylene terephthalate)non-woven graft copolymerization of chitosan [J]. Journal of Southeast University (English Edition), 2012, 28 (4): 474-479. [doi:10.3969/j.issn.1003-7985.2012.04.018]
Copy

Alkylpolyglycoside inducing poly(butylene terephthalate)non-woven graft copolymerization of chitosan()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
28
Issue:
2012 4
Page:
474-479
Research Field:
Energy and Power Engineering
Publishing date:
2012-12-30

Info

Title:
Alkylpolyglycoside inducing poly(butylene terephthalate)non-woven graft copolymerization of chitosan
Author(s):
Chen Yeting1 Shi Tingting1 Qi Shanshan1 Yang Mu1Meng Na1 Gong Zhunan1 Huang Bin1 2
1College of Life Science, Nanjing Normal University, Nanjing 210046, China
2School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
Keywords:
chitosan graft poly(butylene terephthalate)non-woven alkylpolyglycoside biocompatibility wettability
PACS:
TK121
DOI:
10.3969/j.issn.1003-7985.2012.04.018
Abstract:
In order to improve the wettability and biocompatibility of the poly(butylene terephthalate)non-woven(PBTNW), the method of surface modification is used to graft copolymerization of chitosan(CS)onto the PBTNW under alkylpolyglycoside(APG)inducing. The product is thoroughly characterized with the Fourier transform infrared spectroscopy(FTIR), the electron spectroscopy for chemical analysis(ESCA), the thermogravimetric(TG)and the scanning electron microscopy(SEM). It is found that chitosan is successfully grafted onto PBTNW. In addition, the water contact angles, hemolysis tests and cytotoxicity evaluation tests show an improvement in wettability and biocompatibility as a result of graft copolymerization of chitosan. So the CS-grafted PBTNW exhibits greater superiority than the original PBTNW. The CS-grafted PBTNW can be a candidate for blood filter materials and other medical applications.

References:

[1] Shastri V P. In vivo engineering of tissues: biological considerations, challenges, strategies, and future directions [J].Advanced Materials, 2006, 21(32/33): 3246-3254.
[2] Rafat M, Li F F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagen chitosan hydrogels for corneal tissue engineering [J]. Biomaterials, 2008, 29(29): 3960-3972.
[3] Yang C, Cao Y, Sun K, et al. Functional groups grafted nonwoven fabrics for blood filtration — the effects of functional groups and wettability on the adhesion of leukocyte and platelet[J]. Applied Surface Science, 2010, 257(7): 2978-2983.
[4] Solheim B G, Flesland O, Brosstad F, et al. Improved preservation of coagulation factors after pre-storage leukocyte depletion of whole blood[J]. Transfusion and Apheresis Science, 2003, 29(2):133-139.
[5] Azab A K, Doviner V, Orkin B, et al. Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat [J]. Journal of Biomedical Materials Research, 2007, 83A(2): 414-422
[6] Muzzarelli R A A, Morganti P, Morganti G, et al. Chitin nanofibrils/chitosan glycolate composites as wound medicaments [J]. Carbohydrate Polymers, 2007, 70(3): 274-284.
[7] Sarmento B, Ribeiro A, Veiga F, et al. Oral bioavailability of insulin contained in polysaccharide nanoparticles [J]. Biomacromolecules, 2007, 8(10): 3054-3060.
[8] Huang B, Luan J F, Chen Y T, et al. Modification of grafting poly(butylene terephthalate)nonwoven [J]. Journal of Southeast University:Natural Science Edition, 2011, 41(4): 772-777.(in Chinese)
[9] Gaffar M A, El-Rafie S M, El-Tahlawy K F. Preparation and utilization of ionic exchange resin via graft copolymerization of beta-CD itaconate with chitosan [J]. Carbohydrate Polymers, 2004, 56(4): 387-396.
[10] Gorochovceva N, Makuska R. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol)graft copolymers [J]. European Polymer Journal, 2004, 40(4): 685-691.
[11] Jayakumar R, Prabaharan M, Reis R L, et al. Graft copolymerized chitosan present status and applications [J]. Carbohydrate Polymers, 2005, 62(2):142-158.
[12] Dutta P K, Ravikumar M N V, Dutta J. Chitin and chitosan for versatile applications [J]. Journal of Macromolecular Science, Part C: Polymer Reviews, 2002, 42(3): 307-354.
[13] Li T, Shi X W, Du Y M, et al. Quaternized chitosan/alginate nanoparticles for protein delivery[J]. Journal of Biomedical Materials Research, 2007, 83A(2): 307-354.
[14] Mao H Q, Roy K, Troung-Le V L, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency [J]. Journal of Controlled Release, 2001, 70(3): 399-421.
[15] Yuan B, Shang Y B, Lu Y B, et al. The flocculating properties of chitosan-graft-polyacrylamide flocculants(I)—effect of the grafting ratio[J]. Journal of Applied Polymer Science, 2010, 117(4): 1876-1882.
[16] Petrini P, Tanzi M C, Visai L, et al. Novel poly(urethane-aminoamides): an in vitro study of the interaction with heparin[J]. Journal of Biomaterials Science, Polymer Edition, 2000, 11(4): 353-365.
[17] Autian J. Polymer science and technology, polymers in medicine and surgery[M]. New York: Plenum, 1975:8181.
[18] Pereira Ildeu H L, Ayres E, Patricio P S, et al. Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility [J].Acta Biomaterialia, 2010, 6(8):3056-3066.

Memo

Memo:
Biographies: Chen Yeting(1987—), female, graduate; Huang Bin(corresponding author), male, doctor, professor, dhuangb@yahoo.com.cn.
Citation: Chen Yeting, Shi Tingting, Qi Shanshan, et al. Alkylpolyglycoside inducing poly(butylene terephthalate)non-woven graft copolymerization of chitosan[J].Journal of Southeast University(English Edition), 2012, 28(4):474-479.[doi:10.3969/j.issn.1003-7985.2012.04.018]
Last Update: 2012-12-20