|Table of Contents|

[1] Pan Jianwu, Wu Gang, Yuan Xigui,. Fatigue behavior of basalt-aramidand basalt-carbon hybrid fiber reinforced polymer sheets [J]. Journal of Southeast University (English Edition), 2013, 29 (1): 84-87. [doi:10.3969/j.issn.1003-7985.2013.01.017]
Copy

Fatigue behavior of basalt-aramidand basalt-carbon hybrid fiber reinforced polymer sheets()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 1
Page:
84-87
Research Field:
Materials Sciences and Engineering
Publishing date:
2013-03-20

Info

Title:
Fatigue behavior of basalt-aramidand basalt-carbon hybrid fiber reinforced polymer sheets
Author(s):
Pan Jianwu1 Wu Gang2 Yuan Xigui1
1Civil Engineering Department, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Civil Engineering, Southeast University, Nanjing 210096, China
Keywords:
hybrid fiber reinforced polymer sheet basalt-aramid basalt-carbon fatigue experiment stiffness degradation model
PACS:
TU599
DOI:
10.3969/j.issn.1003-7985.2013.01.017
Abstract:
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer(FRP)sheets, fatigue experiments are carried out, considering two hybrid ratios of 1∶1 and 2∶1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1∶1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2∶1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.

References:

[1] Reifsnider K L. Fatigue of composite materials [M]. New York:Elsevier Science Publishers, 1991:431-468.
[2] Hwang W, Han K S. Fatigue of composite, fatigue modulus concept and life prediction [J]. Journal of Composite Materials, 1986, 20(2):155-165.
[3] Wu Fuqiang, Yao Weixing.S-N curve model of composite laminate [J]. Journal of Mechanical Strength, 2004, 26(S1):127-129.(In Chinese)
[4] Wu Zhishen, Wang Xin, Kentaro Iwashita. Tensile fatigue behaviour of FRP and hybrid FRP sheets [J]. Composites: Part B, 2010, 41(5):396-402.
[5] Yang J N, Lee L J, Shen D Y. Modulus reduction and fatigue damage of matrix dominated composite laminates [J]. Composite Structures, 1992, 21(2):91-100.
[6] Yang J N, Jones D L, Yang S H, et al. A stiffness degradation model for graphite/epoxy laminates [J]. Journal of Composite Materials, 1990, 24(7):753-769.
[7] Wu W F, Lee L J, Choi S T. A study of fatigue damage and fatigue life of composite laminates [J]. Journal of Composite Materials, 1996, 30(1):123-137.
[8] Echtermeyer A T, Engh B, Buene L. Lifetime and Young’s modulus changes of glass/phenolic and glass/polyester composites under fatigue [J]. Composites, 1995, 26(1):10-16.
[9] Guo Weiguo, Zhang Kaida. Fatigue residual stiffness for composite laminates [C]//Proceedings of the Fifth National Fatigue Conference. Beijing: China Aviation Society Press, 1991:26-29.(in Chinese)
[10] Li Haitao, Du Shanyi, Feng Peifeng.Fatigue life predicting model for stitched composite laminates[C]//Proceedings of the Fifth National Fatigue Conference. Beijing: China Aviation Society Press, 1991:22-25.(in Chinese)
[11] Whitworth H A. Modeling stiffness reduction of graphite/epoxy composite laminates [J]. Journal of Composite Materials, 1987, 21(4):362-372.
[12] Zhang D Q, Sandor B I. Damage evaluation in composite materials using thermo graphic stress analysis [C]//Advances in Fatigue Lifetime Predictive Techniques. Philadelphia: ASTM Special Tech Publication, 1992:341-353.
[13] Philippidis T P, Vassilopoulos A P. Fatigue of composite laminates under off-axis loading [J]. International Journal of Fatigue, 1999, 22(3):253-262.
[14] Yang Zhongqing. Fatigue behavior of glass fiber reinforced polymer composites [D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008.
[15] Pan Jianwu, Yuan Xigui. Experimental study on mechanical properties of basalt hybrid fiber reinforced polymer sheets [C]//Advanced Materials Research. Kunming, China, 2012:238-241.
[16] China Standards Bureau. GB/T 3354—1999 Test method for tensile properties of oriented fiber reinforced plastics [S]. Beijing: China Standards Press, 1999.(in Chinese)
[17] China Standards Bureau. GB/T 1447—2005 Fiber-reinforced plastics composites-determination of tensile properties [S]. Beijing: China Standards Press, 2005.(in Chinese)

Memo

Memo:
Biography: Pan Jianwu(1976—), male, doctor, lecturer, panjianwu@nuaa.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 51108238).
Citation: Pan Jianwu, Wu Gang, Yuan Xigui. Fatigue behavior of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer sheets[J].Journal of Southeast University(English Edition), 2013, 29(1):84-87.[doi:10.3969/j.issn.1003-7985.2013.01.017]
Last Update: 2013-03-20