|Table of Contents|

[1] Liu Jinzhu, Xing Song, Shen Lianfeng, et al. Ordered successive noise projection cancellation algorithmfor dual lattice-reduction-aided MIMO detection [J]. Journal of Southeast University (English Edition), 2013, 29 (3): 229-234. [doi:10.3969/j.issn.1003-7985.2013.03.001]
Copy

Ordered successive noise projection cancellation algorithmfor dual lattice-reduction-aided MIMO detection()
对偶格约减辅助MIMO检测的噪声投影按序逐次消去算法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 3
Page:
229-234
Research Field:
Information and Communication Engineering
Publishing date:
2013-09-20

Info

Title:
Ordered successive noise projection cancellation algorithmfor dual lattice-reduction-aided MIMO detection
对偶格约减辅助MIMO检测的噪声投影按序逐次消去算法
Author(s):
Liu Jinzhu1 2 Xing Song3 Shen Lianfeng1
1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
3Department of Information Systems, California State University, Los Angeles, CA 90032, USA
刘金铸1 2 邢松3 沈连丰1
1东南大学移动通信国家重点实验室, 南京 210096; 2南京信息工程大学电子信息工程学院, 南京 210044; 3Department of Information Systems, California State University, Los Angeles, CA 90032, USA
Keywords:
ordered successive noise projection cancellation(OSNPC) dual lattice reduction(DLR) multi-input multi-output(MIMO)detection ordered successive interference cancellation(OSIC)
噪声投影按序逐次消去 对偶格约减 多输入多输出检测 干扰按序逐次消去
PACS:
TN911
DOI:
10.3969/j.issn.1003-7985.2013.03.001
Abstract:
A novel nonlinear multi-input multi-output(MIMO)detection algorithm is proposed, which is referred to as an ordered successive noise projection cancellation(OSNPC)algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation(OSIC)algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled, the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance, but it has significantly less complexity in computation. Furthermore, when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction(DLR), the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation, compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.
提出一种新的多输入多输出(MIMO)非线性检测算法, 称为噪声投影按序逐次消去(OSNPC)算法, 以改进传统的干扰按序逐次消去(OSIC)算法的计算复杂度方面的性能.OSIC算法从接收信号向量中逐次消去已知的干扰, 而OSNPC算法从判决变量向量中逐次消去已知的噪声投影.理论分析表明, OSNPC算法在性能上等效于传统的OSIC算法, 但其计算复杂度却大为降低.而且, 当OSNPC算法用于对偶格约减(DLR)辅助MIMO检测时, 所构成的基于OSNPC的DLR辅助MIMO检测方案, 与基于OSIC的DLR辅助MIMO检测方案相比, 其整体复杂度得到进一步降低, 这是因为在它的检测过程中, 省去了对偶格约减基的求逆运算.仿真结果验证了该检测方案的性能与复杂度的理论分析结论.

References:

[1] Viterbo E, Boutros J. A universal lattice code decoder for fading channels [J]. IEEE Transactions on Information Theory, 1999, 45(7): 1639-1642.
[2] Hanzo L, Münster M, Choi B J, et al. OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting [M]. John Wiley & Sons, 2003.
[3] Wolniansky P W, Foschini G J, Golden G D, et al. V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel [C]//1998 URSI International Symposium on Signals, Systems, and Electronics. Pisa, Italy, 1998: 295-300.
[4] Li X, Huang H C, Lozano A, et al. Reduced-complexity detection algorithms for systems using multi-element arrays [C]//Proceedings of IEEE Global Telecommunications. San Francisco, CA, USA, 2000:1072-1076.
[5] Gan Y H, Ling C, Mow W H. Complex lattice reduction algorithm for low-complexity full-diversity MIMO detection [J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2701-2710.
[6] Wübben D, Seethaler D, Jaldén J, et al. Lattice reduction: a survey with applications in wireless communications [J]. IEEE Signal Processing Magazine, 2011, 28(3):70-91.
[7] Ling C, Mow W H, Gan L. Dual-lattice ordering and partial lattice reduction for SIC-based MIMO detection [J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(6): 975-985.
[8] Lenstra A K, Lenstra H W Jr, Lovász L. Factoring polynomials with rational coefficients [J]. Math Annual, 1982, 261(4): 513-534.
[9] Seysen M. Simultaneous reduction of a lattice basis and its reciprocal basis [J]. Combinatorica, 1993, 13(3): 363-376.
[10] Ben-Israel A, Greville T N E. Generalized inverses: theory and applications [M]. New York: Springer-Verlag, 2003.
[11] Kusume K, Joham M, Utschick W. Cholesky factorization with symmetric permutation applied to detecting and precoding spatially multiplexed data streams [J]. IEEE Transactions on Signal Processing, 2007, 55(6): 3089-3103.

Memo

Memo:
Biographies: Liu Jinzhu(1963—), male, graduate; Shen Lianfeng(corresponding author), male, professor, lfshen@seu.edu.cn.
Foundation items: The National Science and Technology Major Project(No.2012ZX03004005-003), the National Natural Science Foundation of China(No.61171081, 61201175), the Innovation Technology Fund of Jiangsu Province(No.BC2012006).
Citation: Liu Jinzhu, Xing Song, Shen Lianfeng.Ordered successive noise projection cancellation algorithm for dual lattice-reduction-aided MIMO detection[J].Journal of Southeast University(English Edition), 2013, 29(3):229-234.[doi:10.3969/j.issn.1003-7985.2013.03.001]
Last Update: 2013-09-20