[1] Zhang J Y, Barron J L. Optical flow at occlusion[C]//The Ninth Conference on Computer and Robot Vision. Toronto, Canada, 2012: 198-205.
[2] Tsai D M, Lai S C. Independent component analysis-based background subtraction for indoor surveillance [J]. IEEE Transactions on Image Processing, 2009, 18(1): 158-160.
[3] Piccardi M. Background subtraction techniques: a review[C]//IEEE International Conference on Systems, Man and Cybemeties. Sydney, Australia, 2004, 4: 3099-3104.
[4] Wren C R, Azarbayejani A, Darrell A, et al. Pfinder: real-time tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
[5] Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999: 246-250.
[6] Zhang J, Chen C H. Moving objects detection and segmentation in dynamic video backgrounds[C]//IEEE Conference on Technologies for Homeland Security. Woburn, MA, USA, 2007: 64-69.
[7] Lee D S. Effective Gaussians mixture learning for video background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
[8] Li G, Zeng R L, Lin L. Moving target detection in video monitoring system[C]//Proceedings of the Sixth World Congress on Intelligent Control and Automation. Dalian, China, 2006: 9778-9781.
[9] Xia Y Q, Ning S H, Shen H. Moving targets detection algorithm based on background subtraction and frames subtraction[C]//IEEE International Conference on Industrial Mechatronics and Automation. Wuhan, China, 2010: 122-125.
[10] Aboueldahab T, Fakhreldin M. Adaptive control of dynamic nonlinear systems using sigmoid diagonal recurrent neural network[C]//IEEE International Conference on Systems, Man and Cybernetics. Istanbul, Turkey, 2010: 4341-4345.