[1] Hou H S, Andrews H C. Cubic splines for image interpolation and digital filtering [J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1978, 26(6): 508-517.
[2] Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction [J]. IEEE Transactions on Image Processing, 2007, 16(2): 349-366.
[3] Zhang X J, Wu X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation [J]. IEEE Transactions on Image Processing, 2008, 17(6): 887-896.
[4] Liu X M, Zhao D B, Xiong R Q, et al. Image interpolation via regularized local linear regression [J]. IEEE Transactions on Image Processing, 2011, 20(12): 3455-3469.
[5] Li X. Patch-based image interpolation: algorithms and applications [C]//International Workshop on Local and Non-Local Approximation in Image Processing. Lausanne, Switzerland, 2008: 1-6.
[6] Dong W S, Zhang L, Lukac R, et al. Sparse representation based image interpolation with non-local autoregressive modeling [J]. IEEE Transactions on Image Processing, 2013, 22(4): 1382-1394.
[7] Zheng M, Bu J J, Chen C, et al. Graph regularized sparse coding for image representation [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336.
[8] Afonso M, Dias J B, Figueiredo M. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems [J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695.
[9] Liu Q G, Wang S S, Luo J H, et al. An augmented Lagrangian approach to general dictionary learning for image denoising [J]. Journal of Visual Communication and Image Representation, 2012, 23(5): 753-766.
[10] Yin W T, Osher S, Goldfarb D, et al. Bregman iterative algorithms for l1-minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 142-168.
[11] Xu J, Osher S. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising [J]. IEEE Transactions on Image Processing, 2007, 16(2): 534-544.
[12] Dong W S, Li X, Zhang L, et al. Sparsity-based image denoising via dictionary learning and structural clustering [C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA, 2011: 457-464.