[1] Yu H, Yang J. A direct LDA algorithm for high dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(10): 2067-2070.
[2] Song F X, Zhang D, Wang J Z, et al. A parameterized direct LDA and its application to face recognition [J]. Neurocomputing, 2007, 71(1): 191-196.
[3] Joshi A, Gangwar A, Saquib Z. Collarette region recognition based on wavelets and direct linear discriminant analysis [J]. International Journal of Computer Applications, 2012, 40(9): 35-39.
[4] Paliwal K K, Sharma A. Improved direct LDA and its application to DNA microarray gene expression data [J]. Pattern Recognition Letters, 2010, 31(16): 2489-2492.
[5] Ye J, Li Q. A two-stage linear discriminant analysis via QR-decomposition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 929-941.
[6] Li R H, Chan C L, Baciu G. DLDA and LDA/QR equivalence framework for human face recognition[C]//The 9th IEEE International Conference on Cognitive Informatics(ICCI). Beijing, China, 2010: 180-185.
[7] Golub G, Loan C, Matrix computations [M]. Baltimore, MD, USA: Johns Hopkins University Press, 1983: 170-236.
[8] Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of the Second IEEE Workshop on Applications of Computer Vision. Los Alamitos, CA, USA, 1994: 138-142.
[9] Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face-recognition algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104.
[10] Georghiades A, Belhumeur P, Kriegman D. From few to many: illumination cone models for face recognition under variable lighting and pose [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660.
[11] Ye J, Janardan R, Park C H, et al. An optimization criterion for generalized discriminant analysis on undersampled problems [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 982-994.