|Table of Contents|

[1] Yin Dongfu, Zhang Zhisheng,. Aerodynamics of flexible wing in bees’ hovering flight [J]. Journal of Southeast University (English Edition), 2013, 29 (4): 419-424. [doi:10.3969/j.issn.1003-7985.2013.04.012]
Copy

Aerodynamics of flexible wing in bees’ hovering flight()
蜜蜂悬停飞行时柔性翅气动特性
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 4
Page:
419-424
Research Field:
Other Disciplines
Publishing date:
2013-12-20

Info

Title:
Aerodynamics of flexible wing in bees’ hovering flight
蜜蜂悬停飞行时柔性翅气动特性
Author(s):
Yin Dongfu, Zhang Zhisheng
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
尹东富, 张志胜
东南大学机械工程学院, 南京 211189
Keywords:
flapping wing coordinate systems hovering flight computational fluid dynamics aerodynamics force power
扑翼 坐标系 悬停飞行 计算流体动力学 气动力 功率
PACS:
V211.3
DOI:
10.3969/j.issn.1003-7985.2013.04.012
Abstract:
The aerodynamics of 2-dimensional flexible wings in bees’ normal hovering flight is studied. Four insect flapping flight coordinate systems, including a global system, a body-fixed system, a rigid wing-fixed system and a flexible wing-fixed system, are established to represent the insects’ position, gesture, wing movement and wing deformation, respectively. Then the transformations among four coordinate systems are studied. It is found that the elliptic coordinate system can improve the computation accuracy and reduce the calculation complexity in a 2-dimensional rigid wing. The computation model of a 2-dimensional flexible wing is established, and the changes of the force, moment, and power are investigated. According to the computation results, the large lift and drag peaks at the beginning and end of the stroke can be explained by the superposition of the rapid translational acceleration, the fast pitching-up rotation and the Magnus effect; and the small force and drag peaks can be explained by the convex flow effect and the concave flow effect. Compared with the pressure force, pressure moment and translational power, the viscous force, viscous moment and rotational power are small and can be ignored.
对蜜蜂悬停飞行时二维柔性翅气动特性进行了研究.建立了昆虫飞行的4种坐标系, 包括地面坐标系、贴体坐标系、固定翼坐标系和柔性翼坐标系, 分别表示昆虫的位置、姿态、翅膀运动形式及变形.对4种坐标系间的变换进行了研究, 并指出在二维刚性翅研究中利用椭圆坐标系可以提高计算精度, 减少计算量.建立了二维柔性翅模型, 分析了气动力、力矩及功率变化情况.对计算结果进行了分析, 并指出扑动开始及结束阶段大的升力和阻力峰值的产生是平动加速、加速旋转及马格纳斯效应的叠加;小的峰值归因于凸向来流和凹向来流作用;与压力、压力力矩和平动功率相比, 黏性力、黏性力矩及转动功率较小, 可以忽略.

References:

[1] Ellington C P. The aerodynamics of hovering insect flight. VI. lift and power requirements[J]. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences, 1984, 305(1122):145-181.
[2] Sun Mao, Tang Jian. Lift and power requirements of hovering flight in Drosophila virilis[J]. The Journal of Experimental Biology, 2002, 205(16): 2413-2427.
[3] Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J]. The Journal of Experimental Biology, 2004, 207(3):449-460.
[4] Liu Hao. Integrated modeling of insect flight: from morphology, kinematics to aerodynamics[J]. Journal of Computational Physics, 2009, 228(2): 439-459.
[5] Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees[J]. Proceedings of the Royal Society of Series B—Biological Sciences, 2013, 280(22): 1-8.
[6] Tian Fangbo, Luo Haoxiang, Song Jialei, et al. Force production and asymmetric deformation of a flexible flapping wing in forward flight[J]. Journal of Fluids and Structures, 2013, 36:149-161.
[7] Tanaka H, Whitney J P, Wood R J. Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight[J]. Integrative and Comparative Biology, 2011, 51(1): 142-150.
[8] Fry S N, Sayaman R, Dickinson M H. The aerodynamics of hovering flight in Drosophila[J]. The Journal of Experimental Biology, 2005, 208(12):2303-2318.
[9] Wang Z J. Two dimensional mechanism for insect hovering[J]. Physical Review Letters, 2000, 85(10): 2216-2219.
[10] Wang Z J. The role of drag in insect hovering[J]. The Journal of Experimental Biology, 2004, 207(23):4147-4155.
[11] Sun Mao. High-lift generation and power requirements of insect flight[J]. Fluid Dynamics Research, 2005, 37(1/2):21-39.
[12] Wang Z J. Computation of insect hovering[J]. Mathematical Methods in the Applied Sciences, 2001, 24(17/18):1515-1521.
[13] Lu Guang, Yan Jingping, Zhang Zhisheng, et al. Dissection of a flexible wing’s performance for insect-inspired flapping-wing micro air vehicles[J]. Advanced Robotics, 2012, 26(5/6): 409-435.
[14] Dickinson M H, Lehmann F O, Sane S. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960.
[15] Zhang Genbao, Liu Yijun, Shi Wu, et al. Numerical simulation of two-dimensional flapping-wing MAVs[J]. Journal of Donghua University: Natural Science, 2011, 37(2): 256-260.(in Chinese)

Memo

Memo:
Biographies: Yin Dongfu(1986—), male, graduate; Zhang Zhisheng(corresponding author), male, doctor, professor, oldbc@seu.edu.cn.
Foundation items: The Fundamental Research Funds for the Central Universities(No.3202003905), Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12_0080).
Citation: Yin Dongfu, Zhang Zhisheng.Aerodynamics of flexible wing in bees’ hovering flight[J].Journal of Southeast University(English Edition), 2013, 29(4):419-424.[doi:10.3969/j.issn.1003-7985.2013.04.012]
Last Update: 2013-12-20