|Table of Contents|

[1] Zhou Yuqing,. Multiple solutions and fermion mass effect in QED3 [J]. Journal of Southeast University (English Edition), 2013, 29 (4): 456-462. [doi:10.3969/j.issn.1003-7985.2013.04.019]
Copy

Multiple solutions and fermion mass effect in QED3()
QED3中多重解和费米质量效应
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 4
Page:
456-462
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2013-12-20

Info

Title:
Multiple solutions and fermion mass effect in QED3
QED3中多重解和费米质量效应
Author(s):
Zhou Yuqing
Department of Physics, Southeast University, Nanjing 211189, China
周雨青
东南大学物理系, 南京211189
Keywords:
Dyson-Schwinger equation chiral limit beyond chiral limit fermion condensate multiple solutions quantum electrodynamics in 2+1 dimensions(QED3)
Dyson-Schwinger方程 手征极限 超越手征极限 费米子 凝聚 多重解 三维量子电动力学
PACS:
O572.24;O413.2
DOI:
10.3969/j.issn.1003-7985.2013.04.019
Abstract:
Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics(QCD)is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2+1 dimensions(QED3)to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.
由于低能区域内的非微扰效应不能忽略, 使得QCD在处理粒子物理中的强子问题时非常困难, 而QED有较成熟的非微扰模型, 可以很好地处理夸克和胶子传播子在费米作用能方面的相关问题, 因此本文采用QED3来处理费米凝聚问题. 首先构建费米子所满足的Dyson-Schwinger方程, 然后求解费米能隙.理论计算表明, 在手征极限下该能隙方程存在3个解, 而在超越手征极限下则存在2个解, 这些解都对应于不同的费米凝聚.手征极限下的费米凝聚可用来分析3个相的存在, 即反铁磁相、赝能级和超导态.而在超越手征极限下, 发现存在2个费米子凝聚.

References:

[1] Burden C J, Praschifka J, Roberts C D. Photon polarization tensor and gauge dependence in three-dimensional quantum electrodynamics[J]. Physical Review D, 1992, 46(6): 2695-2702.
[2] Grignani G, Semenoff G, Sodano P. Confinement-deconfinement transition in three-dimensional QED[J]. Physical Review D, 1996, 53(12): 7157-7161.
[3] Maris P. Confinement and complex singularities in three-dimensional QED[J]. Physical Review D, 1995, 52(10): 6087-6097.
[4] Cornwall J M. Confinement and chiral-symmetry breakdown: estimates of Fππ and of effective quark masses[J]. Physical Review D, 1980, 22(6): 1452-1468..
[5] Pisarski R D. Chiral-symmetry breaking in three-dimensional electrodynamics[J]. Physical Review D, 1984, 29(6): 2423-2426.
[6] Appelquist T, Nash D, Wijewardhana L C R. Critical behavior in(2+1)-dimensional QED[J]. Physical Review Letters, 1988, 60(25): 2575-2578.
[7] Nash D. Higher-order corrections in(2+1)-dimensional QED[J]. Physical Review Letters, 1989, 62(26): 3024-3026.
[8] Maris P. Influence of the full vertex and vacuum polarization on the fermion propagator in(2+1)-dimensional QED[J]. Physical Review D, 1996, 54(6): 4049-4058.
[9] Chang L, Liu Y X, Roberts C D, et al. Dynamical chiral symmetry breaking and a critical mass[J]. Physical Review C, 2007, 75(1): 015201-01-015201-08.
[10] Pennington M R, Walsh D. Masses from nothing: a non-perturbative study of QED3[J]. Physics Letters B, 1991, 253(1): 246-251.
[11] Kondo K I, Nakatani H. Spontaneous chiral-symmetry breaking and scaling law in 3-dimensional QED[J]. Modern Physics Letters A, 1990, 5(6):407-416.
[12] Burden C J, Roberts C D. Light-cone regular vertex in three-dimensional quenched QED[J]. Physical Review D, 1991, 44(2):540-550.
[13] Simmons E H. Useful gauges for studying dynamical fermion mass generation in arbitrary space-time dimension[J]. Physical Review D, 1990, 42(8):2933-2935.
[14] Kondo K I, Maris P. First-order phase transition in three-dimensional QED with Chern-Simons term[J]. Physical Review Letters, 1995, 74(1): 18-21.
[15] Gusynin V P, Hams A H, Reenders M.(2+1)-dimensional QED with dynamically massive fermions in vacuum polarization[J]. Physical Review D, 1996, 53(4): 2227-2235.
[16] Burden C J, Tjiang P C. Deconstructing the vertex Ansatz in three-dimensional quantum electrodynamics[J]. Physical Review D, 1998, 58(8): 085019-01-085019-08.
[17] Feng H T, Sun W M, Hu F, et al. The influence of the gauge boson mass on the critical number of the fermion flavors in QED3[J]. International Journal Modern Physics A, 2005, 20(13): 2753-2762.
[18] Feng H T, He D K, Sun W M, et al. Influence of finite chemical potential on the fermion chiral condensate in QED3[J]. Physics Letters B, 2008, 661(1): 57-65.
[19] Fischer C S, Alkofer R, Dahm T, et al. Dynamical chiral symmetry breaking in unquenched QED3[J]. Physical Review D, 2004, 70(7): 073007-01-073007-20.

Memo

Memo:
Biography: Zhou Yuqing(1961—), male, doctor, professor, zhou_yuqing@263.net.
Foundation items: The National Natural Science Foundation of China(No.11047005), the Science Foundation of Southeast University.
Citation: Zhou Yuqing. Multiple solutions and fermion mass effect in QED3[J].Journal of Southeast University(English Edition), 2013, 29(4):456-462.[doi:10.3969/j.issn.1003-7985.2013.04.019]
Last Update: 2013-12-20