|Table of Contents|

[1] Li Yang, Su Huiling, Sun Yujun, et al. Research on large-scale cascading failureof power systems using synergistic effect [J]. Journal of Southeast University (English Edition), 2014, 30 (1): 32-38. [doi:10.3969/j.issn.1003-7985.2014.01.007]
Copy

Research on large-scale cascading failureof power systems using synergistic effect()
基于协同效应的电力系统大规模连锁故障研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
30
Issue:
2014 1
Page:
32-38
Research Field:
Electrical Engineering
Publishing date:
2014-03-31

Info

Title:
Research on large-scale cascading failureof power systems using synergistic effect
基于协同效应的电力系统大规模连锁故障研究
Author(s):
Li Yang1 Su Huiling1 2 Sun Yujun1 Dou Xun3
1School of Electrical Engineering, Southeast University, Nanjing 210096, China
2State Grid Jiangsu Electric Power Company Research Institute, Nanjing 211103, China
3School of Automation and Electrical Engineering, Nanjing Tech University, Nanjing 211816, China
李扬1 苏慧玲1 2 孙宇军1 窦迅3
1东南大学电气工程学院, 南京 210096; 2国网江苏省电力公司电力科学研究院, 南京 211103; 3南京工业大学自动化与电气工程学院, 南京 211816
Keywords:
synergistic effect cascading failure power system vulnerability critical line load loss rate
协同效应 连锁故障 电力系统脆弱性 关键线路 失负荷率
PACS:
TM71
DOI:
10.3969/j.issn.1003-7985.2014.01.007
Abstract:
This paper discusses the primary causes from the point of synergistic effects to improve power system vulnerability in the power system planning and safety operation. Based on the vulnerability conception in the complex network theory, the vulnerability of the power system can be evaluated by the minimum load loss rate when considering power supply ability. Consequently, according to the synergistic effect theory, the critical line of the power system is defined by its influence on failure set vulnerability in N-k contingencies. The cascading failure modes are proposed based on the criterion whether the acceptable load curtailment level is below a preset value. Significant conclusions are revealed by results of IEEE 39 case analysis: weak points of power networks and heavy load condition are the main causes of large-scale cascading failures; damaging synergistic effects can result in partial failure developed into large-scale cascading failures; vulnerable lines of power systems can directly lead the partial failure to deteriorate into a large blackout, while less vulnerable lines can cause a large-scale cascading failure.
为改善电力系统脆弱性并服务于电网规划和系统安全运行, 从系统协同效应的角度探讨连锁故障的发生机理.基于复杂网络脆弱性理论, 考虑电力系统的供电能力, 采用最小失负荷率建立电力系统脆弱性模型.然后基于协同效应理论, 考虑N-k故障情况, 建立电力系统线路关键性模型, 以分析影响脆弱性的关键线路.通过设置允许切负荷水平值, 建立电力系统过负荷情况下的连锁故障模型.采用IEEE39算例分析验证了所提方法的有效性.分析结果表明:电网结构的薄弱点及重负荷是诱发大规模连锁故障的主要原因;高脆弱线路能够直接导致大停电事故, 而低脆弱线路能够导致大规模连锁故障的发生.

References:

[1] Nedic D P, Dobson I, Kirschen D S, et al. Criticality in a cascading failure blackout model[J]. International Journal of Electrical Power and Energy Systems, 2006, 28(9):627-633.
[2] Ash J, Newth D. Optimizing complex networks for resilience against cascading failure[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 380(7):673-683.
[3] Cao Yijia, Wang Guangzeng, Cao Lihua, et al. An identification model for self-organized criticality of power grids based on power flow entropy[J]. Automation of Electric Power Systems, 2011, 35(7):1-6.(in Chinese)
[4] Dobson I, Carreras B A, Lynch V E, et al. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2007, 17(2):026103-01-026103-11.
[5] Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the North American power grid[J]. The European Physical Journal B, 2005, 46(1):101-107.
[6] Rosas-Casals M, Valverde S, Sole R V. Topological vulnerability of the European power grid under errors and attacks[J]. International Journal of Bifurcation and Chaos, 2007, 17(7):2465-2475.
[7] Zhou Yanheng, Wu Junyong, Zhang Guangtao, et al. Assessment on power system vulnerability considering cascading failure[J]. Power System Technology, 2013, 37(2):444-449.(in Chinese)
[8] Mei S, Zhang X, Cao M. Power grid complexity[M]. Berlin: Springer-Verlag, 2011.
[9] Chen G, Dong Z Y, Hill D J, et al. Attack structural vulnerability of power grids: a hybrid approach based on complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(3):595-603.
[10] Jalili M. Error and attack tolerance of small-worldness in complex networks[J]. Journal of Informetrics, 2011, 5(3): 422-430.
[11] Arianos S, Bompard E, Carbone A, et al. Power grid vulnerability: a complex network approach[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2009, 19(1): 0133119-01-013119-06.
[12] Xu Lin, Wang Xiuli, Wang Xifan. Cascading failure mechanism in power grid based on electric betweenness and active defence[J]. Proceedings of the CSEE, 2010, 30(13): 61-68.(in Chinese)
[13] Dou B, Wang X, Zhang S. Robustness of networks against cascading failures[J]. Physica A: Statistical Mechanics and Its Applications. 2010, 389(11): 2310-2317.
[14] Bompard E, Napoli R, Xue F. Analysis of structural vulnerabilities in power transmission grids[J]. International Journal of Critical Infrastructure Protection, 2009, 2(1): 5-12.
[15] He Daren, Liu Zonghua, Wang Binghong. Complex system and complex network[M]. Beijing: Higher Education Press, 2009.(in Chinese)
[16] Su Huiling, Li Yang. Electrical component vulnerability analysis from complex network characteristics of power systems[J]. Automation of Electrical Power Systems, 2012, 36(23): 12-17.(in Chinese)
[17] Jönsso H, Johansson J, Johansson H, et al. Identifying critical components in technical infrastructure networks[J]. Journal of Risk and Reliability, 2008, 222(2): 235-243.
[18] Su Huiling, Li Yang. Line vulnerability risk analysis based on complex network characteristics of power system[J]. Electric Power Automation Equipment, 2014, 34(2): 101-107.(in Chinese)
[19] Xu Lin, Wang Xiuli, Wang Xifan. Electric betweenness and its application in vulnerable line identification in power system[J]. Proceedings of the CSEE, 2010, 30(1): 33-39.(in Chinese)

Memo

Memo:
Biography: Li Yang(1961—), male, doctor, professor, li_yang@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51277028).
Citation: Li Yang, Su Huiling, Sun Yujun, et al.Research on large-scale cascading failure of power systems using synergistic effect[J].Journal of Southeast University(English Edition), 2014, 30(1):32-38.[doi:10.3969/j.issn.1003-7985.2014.01.007]
Last Update: 2014-03-20