|Table of Contents|

[1] Feng Lihang, Zhang Weigong, Lin Guoyu, et al. Inverse kinematic deriving and actuator control of Delta robotusing symbolic computation technology [J]. Journal of Southeast University (English Edition), 2014, 30 (1): 51-56. [doi:10.3969/j.issn.1003-7985.2014.01.010]
Copy

Inverse kinematic deriving and actuator control of Delta robotusing symbolic computation technology()
基于符号计算的Delta机器人快速运动学分析与控制实现
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
30
Issue:
2014 1
Page:
51-56
Research Field:
Automation
Publishing date:
2014-03-31

Info

Title:
Inverse kinematic deriving and actuator control of Delta robotusing symbolic computation technology
基于符号计算的Delta机器人快速运动学分析与控制实现
Author(s):
Feng Lihang1 Zhang Weigong1 2 Lin Guoyu1 Gong Zongyang2 Chen Gang3
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2Suzhou Research Institute, Southeast University, Suzhou 215000, China
3School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
冯李航1 张为公1 2 林国余1 龚宗洋2 陈刚3
1东南大学仪器科学与工程学院, 南京 210096; 2东南大学苏州研究院, 苏州 215000; 3南京理工大学机械工程学院, 南京 210094
Keywords:
delta robot symbolic computation inverse kinematic problems linear graph theory
Delta机器人 符号计算 逆运动学问题 线性图论
PACS:
TP242
DOI:
10.3969/j.issn.1003-7985.2014.01.010
Abstract:
In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control, a description of the linear graph principle for automatically generating kinematic equations in a mechanical system, as well as the symbolic computation implementation of this procedure, is reviewed and projected into the Delta robot. Based on the established linear graph representation, the explicit symbolic expression of constraint equations and inverse kinematic solutions are obtained successfully using a symbolic computation engine Maple, so that actuator control and trajectory tracking can be directly realized. Two practical motions, the circular path and Adept motion, are simulated for the validation of symbolic solutions, respectively. Results indicate that the simulation satisfies the requirement of the quick motion within an acceptable threshold. Thus, the precision of kinematic response can be confirmed and the correctness of inverse solution is verified.
为了有效地导出Delta机器人的解析解并实现运动控制, 基于多体机械系统线性图论及其运动方程自动生成技术, 将符号计算运用到Delta机器人上.首先建立了Delta机构的线性图解表达, 利用符号计算引擎Maple可对图解的约束方程进行数学描述, 并最终求得了逆运动解的精确显式表达式, 从而可直接地实现驱动控制和运动轨迹跟踪.用平面圆弧和Adept抓放2种实际工程的机械手运动模型, 对Delta机器人的符号计算解进行了仿真分析.结果表明, 用于Delta机器人驱动控制的符号解误差较小, 满足快速运动的需求, 从而确认了约束方程的运动学响应精度, 并验证了显式符号解的正确性.

References:

[1] Pierrot F, Reynaud C, Fournier A. Delta: a simple and efficient parallel robot [J]. Robotica, 1990, 8(1): 105-109.
[2] Ai Q L, Zu S J, Xu F. Review of kinematics and singularity of parallel manipulator [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(8): 1345-1359.(in Chinese)
[3] Vischer P, Clavel R. Kinematic calibration of the parallel Delta robot [J]. Robotica, 1998, 16(2): 207-218.
[4] Tsai L W, Walsh G C, Stamper R E. Kinematics of a novel three DOF translational platform [C]//IEEE International Conference no Robotics and Automation. Minneapolis, MN, USA, 1996: 3446-3451.
[5] Stock M, Miller K. Optimal kinematic design of spatial parallel manipulators: application to linear delta robot [J]. Journal of Mechanical Design, 2003, 125(2): 292-301.
[6] Schmitke C, Goossens P. Symbolic computation techniques for multibody model development and code generation [C]//Multibody Dynamics, ECCOMAS Thematic Conference. Brussels, Belgium, 2011: 4-7.
[7] McPhee J, Schmitke C, Redmond S. Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory [J]. Mathematical and Computer Modelling, 2004, 10(1): 1-23.
[8] McPhee J, Redmond S. Modelling multibody systems with indirect coordinates [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(50): 6942-6957.
[9] Léger M, McPhee J. Selection of modeling coordinates for forward dynamic multibody simulations [J]. Multibody System Dynamics, 2007, 18(2): 277-297.
[10] Hrebícek J. Mathematical modeling with maple and maplesim [J]. Journal of Applied Mathematics, 2008, 1(2): 227-240.
[11] López M, Castillo E, García G, et al. Delta robot: inverse, direct, and intermediate Jacobians [J]. Journal of Mechanical Engineering Science, 2006, 220(1): 103-109.
[12] Nabat V, Rodriguez M, Krut S, et al. Par4: very high speed parallel robot for pick-and-place [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Alberta, Canada, 2005: 553-558.

Memo

Memo:
Biographies: Feng Lihang(1987—), male, graduate; Zhang Weigong(corresponding author), male, doctor, professor, zhangwg@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51205208).
Citation: Feng Lihang, Zhang Weigong, Lin Guoyu, et al. Inverse kinematic deriving and actuator control of Delta robot using symbolic computation technology[J].Journal of Southeast University(English Edition), 2014, 30(1):51-56.[doi:10.3969/j.issn.1003-7985.2014.01.010]
Last Update: 2014-03-20