|Table of Contents|

[1] Wu Feiyun, Zhou Yuehai, Tong Feng, Fang Shiliang, et al. Compressed sensing estimation of sparse underwateracoustic channels with a large time delay spread [J]. Journal of Southeast University (English Edition), 2014, 30 (3): 271-277. [doi:10.3969/j.issn.1003-7985.2014.03.003]
Copy

Compressed sensing estimation of sparse underwateracoustic channels with a large time delay spread()
稀疏长时延水声信道的压缩感知估计
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
30
Issue:
2014 3
Page:
271-277
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2014-09-30

Info

Title:
Compressed sensing estimation of sparse underwateracoustic channels with a large time delay spread
稀疏长时延水声信道的压缩感知估计
Author(s):
Wu Feiyun1 Zhou Yuehai1 Tong Feng1 Fang Shiliang2
1Key Laboratory of Underwater Acoustic Communication and Marine Information Technologyof Minister of Education, Xiamen University, Xiamen 361005, China
2Key Laboratory of Underwater Acoustic Signal Processing of Minister of Education, Southeast University, Nanjing 210096, China
伍飞云1 周跃海1 童峰1 方世良2
1厦门大学水声通信与海洋信息技术教育部重点实验室, 厦门 361005; 2东南大学水声信号处理教育部重点实验室, 南京 210096
Keywords:
norm constraint sparse underwater acoustic channel compressed sensing
范数约束 稀疏水声信道 压缩感知
PACS:
TB567
DOI:
10.3969/j.issn.1003-7985.2014.03.003
Abstract:
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares(LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.
提出一种基于压缩感知框架下的长时延水声信道估计算法.用传统的自适应算法如最小二乘(LS)算法处理典型的长时延水声信道的估计问题时, 会导致其收敛速率下降, 即跟踪能力有限, 而使用时延多普勒函数则加大了计算量和复杂度.通过训练序列构建一个Toeplitz矩阵作为测量矩阵, 将长时延信道估计问题转为压缩感知问题, 并利用信道的稀疏结构特性进行稀疏估计.与传统的l1范数或基于指数形式的近似l0范数稀疏恢复策略不同, 所提出的是一种新的似l0范数稀算法(简称AL0), 该算法通过融合最陡梯度和迭代投影寻优进行求解.仿真与海试数据结果验证了所提算法的优越性.

References:

[1] Rouseff D, Badiey M, Song A. Effect of reflected and refracted signals on coherent underwater acoustic communication: results from the Kauai experiment(KauaiEx 2003)[J]. Journal of the Acoustical Society of America, 2009, 126(5): 2359-2366.
[2] Singer A C, Nelson J K, Kozat S S. Signal processing for underwater acoustic communications [J]. IEEE Communication Magazine, 2009, 47(1): 90-96.
[3] Chitre M S, Shahabodeen S, Stojanovic M. Underwater acoustic communications and networking: recent advances and future challenges [J]. Marine Technology Society Journal, 2008, 42(1): 103-116.
[4] Stojanovic M. Efficient processing of acoustic signals for high-rate information transmission over sparse underwater channels [J]. Physics Communications, 2008, 1(2): 146-161.
[5] Demoulin X, Stephan Y, Jesus S, et al. Intimate 96: a shallow water tomography experiment devoted to the study of internal tides [C]// Proceedings of the International Conference on Shallow Water Acoustics. Beijing: China Ocean Press, 1997: 485-490.
[6] Li W, Preisig J C. Estimation of rapidly time-varying sparse channels [J]. IEEE Journal of Ocean Engineering, 2007, 32(4): 927-939.
[7] Cotter S F, Rao B D. Sparse channel estimation via matching pursuit with application to equalization [J]. IEEE Transactions on Communications, 2002, 50(3): 374-377.
[8] Pelekanakis K, Chitre M. New sparse adaptive algorithms based on the natural gradient and the L0-norm [J]. IEEE Journal of Ocean Engineering, 2013, 38(2): 323-332.
[9] Wu F Y, Tong F. Non-uniform norm constraint LMS algorithm for sparse system identification [J]. IEEE Communication Letters, 2013, 17(2): 385-388.
[10] Paige C C. Fast numerically stable computations for generalized linear least squares problems [J]. SIAM Journal on Numerical Analysis, 1979, 16(1): 165-171.
[11] Haykin S. Adaptive filter theory [M].3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.
[12] Song A, Badiey M, Song H C, et al. Impact of ocean variability on coherent underwater acoustic communications during the Kauai experiment(KauaiEx)[J]. Journal of the Acoustical Society of America, 2008, 123(2): 856-865.
[13] Zeng W J, Xu W. Fast estimation of sparse doubly spread acoustic channels [J]. Journal of the Acoustical Society of America, 2012, 131(1): 303-317.
[14] Wang Z H, Zhou S, Catipovic J, et al. Parameterized cancellation of partial-band partial-block-duration interference for underwater acoustic OFDM [J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1782-1795.
[15] Berger C R, Zhou S, Preisig J, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708-1721.
[16] Gohberg I, Olshevsky V. Complexity of multiplication with vectors for structured matrices [J]. Linear Algebra Application, 1994, 202(15): 163-192.
[17] Haupt J, Bajwa W, Raz G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation [J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.
[18] Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery [J]. Communications on Pure and Applied Mathematics, 2010, 63(1): 1-38.
[19] Jin J, Gu Y, Mei S. A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 409-420.
[20] Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[21] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[22] Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 4(4): 118-122.
[23] Yang T C. Correlation-based decision-feedback equalizer for underwater acoustic communications [J]. IEEE Journal of Ocean Engineering, 2005, 30(4): 865-880.
[24] Zeng W J, Jiang X, Li X L, et al. Deconvolution of sparse underwater acoustic multipath channel with a large time-delay spread [J]. Journal of the Acoustical Society of America, 2010, 172(2): 909-919.
[25] Kostas S, Paolo C, Michele Z. The throughput of underwater networks: analysis and validation using a ray tracing simulator [J]. IEEE Transactions on Wireless Communications, 2013, 12(3): 1108-1117.

Memo

Memo:
Biographies: Wu Feiyun(1984—), male, graduate; Tong Feng(corresponding author), male, doctor, professor, ftong@xmu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11274259), the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education(No.UASP1305).
Citation: Wu Feiyun, Zhou Yuehai, Tong Feng, et al. Compressed sensing estimation of sparse underwater acoustic channels with a large time delay spread[J].Journal of Southeast University(English Edition), 2014, 30(3):271-277.[doi:10.3969/j.issn.1003-7985.2014.03.003]
Last Update: 2014-09-20