[1] Long F W. The Brauer group of dimodule algebras [J]. Journal of Algebra, 1974, 31(1/2/3): 559-601.
[2] Caenepeel C, Militaru G, Zhu S L. Crossed modules and Doi-Hopf modules [J]. Israel Journal of Mathematics, 1997, 100(4): 221-247.
[3] Militaru G. The long dimodules category and nonlinear equations [J]. Algebras and Representation Theory, 1999, 2(2): 177-200.
[4] Larsson D, Silvestrov S D. Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities [J]. Journal of Algebra, 2005, 288(2): 321-344.
[5] Makhlouf A, Silvestrov S. Hom-algebra structures [J]. Journal of Generalized Lie Theory and Applications, 2008, 2(2): 51-64.
[6] Makhlouf A, Silvestrov S. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras [M]//Generalized Lie theory in mathematics, physics and beyond. Berlin: Springer, 2009:189-206.
[7] Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras [J]. Journal of Algebra and Its Applications, 2010, 9(4): 1-37.
[8] Yau D. Hom-bialgebras and comodule Hom-algebras [J]. International Electronic Journal of Algebra, 2010, 8: 45-64.
[9] Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras [EB/OL].(2009-05-12)[2013-02-27]. http://arxiv.org/abs/0905.1890.
[10] Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras [J]. Journal of Physics A, 2009, 42(16):165202-1-165202-12.
[11] Yau D. The Hom-Yang-Baxter equation and Hom-Lie algebras [J]. Journal of Mathematical Physics, 2011, 52(5): 053502-1-053502-19.
[12] Yau D. Hom-quantum groups Ⅰ: quasi-triangular Hom-bialgebras [J]. Journal of Physics A, 2012, 45(6): 065203-1-065203-23.
[13] Yau D. Hom-quantum groups Ⅱ: cobraided Hom-bialgebras and Hom-quantum geometry [EB/OL].(2009-07-10)[2013-02-27]. http://arxiv.org/abs/0907.1880.
[14] Yau D. Enveloping algebras of Hom-Lie algebras [J]. Journal of Generalized Lie Theory and Applications, 2008, 2(2): 95-108.