[1] Sanchez-Lopez A, Arroyo-Figueroa G, Villavicencio-Ramirez A. Advanced control algorithms for steam temperature regulation of thermal power plants[J]. International Journal of Electrical Power & Energy Systems, 2004, 26(10): 779-785.
[2] Zhang J H, Zhang F F, Ren M F, et al. Cascade control of superheated steam temperature with neuro-PID controller[J]. ISA Transactions, 2012, 51(6): 778-785.
[3] Riggs J B, Curtner K, Foslien W. Comparison of two advanced steam temperature controllers for coal-fired boilers[J]. Computers & Chemical Engineering, 1995, 19(5): 541-550.
[4] Naidu K, Mokhlis H, Bakar A H A. Multiobjective optimization using weighted sum Artificial Bee Colony algorithm for Load Frequency Control[J]. International Journal of Electrical Power & Energy Systems, 2014, 55: 657-667.
[5] Hung M H, Shu A S, Ho S J, et al. A novel intelligent multiobjective simulated annealing algorithm for designing robust PID controllers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38(2): 319-330.
[6] Pedersen G K M, Yang Z. Multi-objective PID-controller tuning for a magnetic levitation system using NSGA-Ⅱ[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. Seattle, USA, 2006: 1737-1744.
[7] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri, Turkey: Computer Engineering Department, Erciyes University, 2005.
[8] Karaboga D, Basturk B. On the performance of artificial bee colony(ABC)algorithm [J]. Applied Soft Computing, 2008, 8(1): 687-697.
[9] Zhou X, Shen J, Sheng J X. An immune recognition based algorithm for finding non-dominated set in multi-objective optimization[C]//Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Wuhan, China, 2008: 305-310.
[10] Branke J, Deb K. Integrating user preferences into evolutionary multi-objective optimization[M]//Knowledge Incorporation in Evolutionary Computation. Berlin: Springer, 2005: 461-477.
[11] Coello C A C. Handling preferences in evolutionary multiobjective optimization: a survey[C]//Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, CA, USA, 2000, 1: 30-37.
[12] Molina J, Santana L V, Hernández-Díaz A G, et al. g-dominance:Reference point based dominance for multiobjective metaheuristics[J]. European Journal of Operational Research, 2009, 197(2): 685-692.
[13] Deb K, Sundar J, Udaya Bhaskara Rao N, et al. Reference point based multi-objective optimization using evolutionary algorithms[J]. International Journal of Computational Intelligence Research, 2006, 2(3): 273-286.
[14] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[15] Luo B, Zheng J, Xie J, et al. Dynamic crowding distance? A new diversity maintenance strategy for MOEAs[C]//Proceedings of the Fourth International Conference on Natural Computation. Jinan, China, 2008: 580-585.
[16] Zitzler E, Laumanns M, Thiele L. Spea2: improving the strength Pareto evolutionary algorithm [R]. Zurich, Switzerland: Computer Engineering and Networks Laboratory(TIK), ETH Zurich, 2001.
[17] Zhao L, Ju G, Lu J. An improved genetic algorithm in multi-objective optimization and its application[J]. Proceedings of the CSEE, 2008, 28(2): 96-102.(in Chinese)
[18] Li M, Shen J. Simulating study of adaptive GA-based PID parameter optimization for the control of superheated steam temperature[J]. Proceedings of the CSEE, 2002, 22(8): 145-149.(in Chinese)