[1] Boussinesq M. Théorie générale des mouvements qui sout propagés dans un canal rectangularire horizontal[J]. C R Acad Sc Paris, 1871, 73(3): 256-260.
[2] Bona J, Sachs R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[J]. Comm Math Phys, 1988, 118(1): 15-29.
[3] Liu Y. Instability of solitary waves for generalized Boussinesq equations[J]. J Dynam Differential Equations, 1993, 5(3): 537-558.
[4] Liu Y. Instability and blow-up of solutions to a generalized Boussinesq equation[J]. SIAM J Math Anal, 1995, 26(6): 1527-1546.
[5] Yusufoglu E. Blow-up solutions of the generalized Boussinesq equation obtained by variational iteration method[J]. Nonlinear Dynam, 2008, 52(4): 395-402.
[6] Chierchia L, You J. KAM tori for 1D nonlinear wave equations with periodic boundary conditions [J]. Comm Math Phys, 2000, 211(2): 497-525.
[7] Geng J, You J. A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions[J]. J Differential Equations, 2005, 209(1): 1-56.
[8] Eliasson L, Kuksin S. KAM for the nonlinear Schrödinger equation[J]. Annals of Mathematics, 2010, 172(1): 371-435.
[9] Kuksin S, Poschel J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation[J]. Annals of Mathematics, 1996, 143(1): 149-179.