[1]Thipparaboina R, Khan W, Domb A J. Eluting combination drugs from stents [J]. International Journal of Pharmaceutics, 2013, 454(1): 4-10.
[2]Kopaczyńska M, Sobieszczańska B, Ulatowska-Jar(·overz)a A, et al. Photoactivated titania-based nanomaterialsfor potential application as cardiovascularstent coatings [J]. Biocybernetics and Biomedical Engineering, 2014, 34(3): 189-197.
[3]Nef H M, Möllmann H, Weber M. Cobalt-chrome multi-link visionTM—stent implantation in diabetics and complex lesions: results from the DaVinci-Registry [J]. Clin Res Cardio, 2011, 98(11): 731-737.
[4]König A, Schiele T M, Rieber J, et al. Influence of stent design and deployment technique on neointima formation and vascular remodeling [J]. Z Kardiol, 2002, 91(Sup 3): 98-102.
[5]Waksman R. Update on Bioabsorbable stents: from bench to Clinical [J]. Interven Cardiol, 2006, 19(5): 414-421.
[6]Stepak B, Antonczak A J, Bartkowiak-Jowsa M, et al. Fabrication of a polymer-based biodegradable stent using a CO2 laser [J]. Archives of civil and mechanical engineering, 2014, 14(2): 317-326.
[7]Ghimire G, Spiro J, Kharbanda R. Initial evidence for the return of coronary vasoreactivity following the absorption of bioabsorbable magnesium alloy coronary stents [J]. EuroIntervention, 2009, 4(4): 481-484.
[8]Muramatsu T, Onuma Y, García-García H M, et al. Incidence and short-term clinical outcomes of small side branch occlusion after implantation of an everolimus-elutingbioresorbable vascular scaffold [J]. Cardiovascular Interventions, 2013, 6(3): 247-257.
[9]Pati F, Shim J-H, Lee J-S, et al. 3D printing of cell-laden constructs for heterogeneous tissue regeneration [J]. Society of Manufacturing Engineers, 2013, 1(1): 49-53.
[10]Feng Q, Jiang W, Sun K, et al. Mechanical properties and in vivo performance of a novel sliding-lock bioabsorbable poly-p-dioxanone stent [J]. J Mater Sci: Mater Med, 2011, 21(10): 2319-2327.
[11]Tong H-W, Zhang X, Wang M. A new nanofiber fabrication technique based on coaxial electrospinning [J]. Materials Letters, 2012, 66(1): 257-260.
[12]Hu X L, Liu S, Zhou G Y, et al. Electrospinning of polymeric nanofibers for drug delivery applications [J]. Journal of Controlled Release, 2014, 185(10): 12-21.
[13]Yan F F, Liu Y Y, Chen H P, et al. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology [J]. AIP Advances, 2014, 4(3): 031321-1-031321-8.
[14]Yang K K, Wang Y Z. A recyclable and biodegrable polymer: poly(p-dioxanone)[J]. Materials China, 2011, 30(8): 25-34.(in Chinese)
[15]Sabino M A, Feijoe J L, Muller A J, et al. Crystallisation and morphology of poly(p-dioxanone)[J]. Macromol Chem Phys, 2000, 201(18): 2687-2698.
[16]Petrtyl J, Bruha R, Horak L, et al. Management of benign intrahepatic bile duct strictures: initial experience with polydioxanone biodegradable stents [J]. Endoscopy, 2010, 42(Sup 2): 89-90.
[17]Alt E, Haehnel J, Beilharz C, et al. Inhibition of neo-intima formation after experimental coronary artery stenting: a new biodegradable stent coating releasing hirudin and the prostacyclin analogue iloprest [J]. Circulation, 2000, 101(12): 1453-58.
[18]Sun K, Sun K. A novel bioabsorbable sliding-lock stents: China ZL201010111299[P]. 2011-08-24.(in Chinese)
[19]Yan F F, Chen H P, Zheng L L, et al. The controllable PVA-chitosan fiber prepared by the near-field electrospinning for tissue engineering [J]. Advance Journal of Food Science and Technology, 2013, 5(8): 1073-1078.
[20]Chen H P, Liu Y Y, Jiang Z L, et al. Cellscaffold interaction within engineered tissue [J]. Experimental Cell Research, 2014, 323(2): 346-351.
[21]Han F X, Jia X L, Dai D D, et al. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF [J]. Biomaterials, 2013, 34(30): 7302-7313.