|Table of Contents|

[1] Gao Ni, Gao Ling, He Yiyue, Gao Quanli, et al. Intrusion detection model based on deep belief nets [J]. Journal of Southeast University (English Edition), 2015, 31 (3): 339-346. [doi:10.3969/j.issn.1003-7985.2015.03.007]
Copy

Intrusion detection model based on deep belief nets()
基于深度信念网络的入侵检测模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 3
Page:
339-346
Research Field:
Computer Science and Engineering
Publishing date:
2015-09-20

Info

Title:
Intrusion detection model based on deep belief nets
基于深度信念网络的入侵检测模型
Author(s):
Gao Ni1 Gao Ling1 He Yiyue1 2 Gao Quanli1 Ren Jie1
1School of Information Science and Technology, Northwest University, Xi’an 710127, China
2School of Economics and Management, Northwest University, Xi’an 710127, China
高妮1 高岭1 贺毅岳1 2 高全力1 任杰1
1西北大学信息科学与技术学院, 西安 710127; 2西北大学经济管理学院, 西安 710127
Keywords:
intrusion detection deep belief nets restricted Boltzmann machine deep learning
入侵检测 深度信念网络 限制玻尔兹曼机 深层学习
PACS:
TP393.08
DOI:
10.3969/j.issn.1003-7985.2015.03.007
Abstract:
This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets(DBN)is proposed to conduct intrusion detection, and the principles regarding DBN are discussed. The DBN is composed of a multiple unsupervised restricted Boltzmann machine(RBM)and a supervised back propagation(BP)network. First, the DBN in the proposed model is pre-trained in a fast and greedy way, and each RBM is trained by the contrastive divergence algorithm. Secondly, the whole network is fine-tuned by the supervised BP algorithm, which is employed for classifying the low-dimensional features of the intrusion data generated by the last RBM layer simultaneously. The experimental results on the KDD CUP 1999 dataset demonstrate that the DBN using the RBM network with three or more layers outperforms the self-organizing maps(SOM)and neural network(NN)in intrusion classification. Therefore, the DBN is an efficient approach for intrusion detection in high-dimensional space.
研究了入侵检测系统中海量数据分类的问题.讨论了深度信念网络(DBN)的原理, 提出了基于DBN的入侵检测模型.DBN由多层无监督的限制玻尔兹曼机(RBM)网络和一层有监督的反向传播(BP)网络构成.该入侵检测模型采用一种快速、贪婪的方法对DBN网络进行预训练, 利用对比分歧算法逐层训练每一个RBM网络;然后, 利用有监督的BP算法对整个DBN网络进行微调, 并同时对RBM网络输出的低维特征进行入侵数据分类.基于KDD CUP 1999数据集的实验结果表明, 使用3层以上的DBN模型分类效果优于自组织映射和神经网络方法.因此, DBN是一种有效且适用于高维特征空间的入侵检测方法.

References:

[1] Kuang F, Xu W, Zhang S. A novel hybrid KPCA and SVM with GA model for intrusion detection[J]. Applied Soft Computing, 2014, 18(4):178-184.
[2] Beqiri E. Neural networks for intrusion detection systems[J]. Global Security Safety & Sustainability, 2009, 45:156-165.
[3] Ahmad I, Abdullah A, Alghamdi A, et al. Optimized intrusion detection mechanism using soft computing techniques[J]. Telecommunication Systems, 2013, 52(4):2187-2195.
[4] Depren O, Topallar M, Anarim E, et al. An intelligent intrusion detection system(IDS)for anomaly and misuse detection in computer networks[J]. Expert Systems with Applications, 2005, 29(4):713-722.
[5] Bengio Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-127.
[6] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[7] Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2006:153-160.
[8] Stolfo S J, Fan W, Lee W K, et al. Cost-based modeling for fraud and intrusion detection: results from the JAM project [EB/OL].(1999-10-28)[2011-06-27]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[9] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[10] Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8):1771-1800
[11] Larochelle H, Bengio Y, Louradour J, et al. Exploring strategies for training deep neural neural networks [J]. Journal of Machine Learning Research, 2009, 10(1):1-40.

Memo

Memo:
Biographies: Gao Ni(1982—), female, graduate; Gao Ling(corresponding author), male, doctor, professor, gl@nwu.edu.cn.
Foundation items: The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2013BAK01B02), the National Natural Science Foundation of China(No.61373176), the Scientific Research Projects of Shaanxi Educational Committee(No.14JK1693).
Citation: Gao Ni, Gao Ling, He Yiyue, et al.Intrusion detection model based on deep belief nets[J].Journal of Southeast University(English Edition), 2015, 31(3):339-346.[doi:10.3969/j.issn.1003-7985.2015.03.007]
Last Update: 2015-09-20