[1] Kuang F, Xu W, Zhang S. A novel hybrid KPCA and SVM with GA model for intrusion detection[J]. Applied Soft Computing, 2014, 18(4):178-184.
[2] Beqiri E. Neural networks for intrusion detection systems[J]. Global Security Safety & Sustainability, 2009, 45:156-165.
[3] Ahmad I, Abdullah A, Alghamdi A, et al. Optimized intrusion detection mechanism using soft computing techniques[J]. Telecommunication Systems, 2013, 52(4):2187-2195.
[4] Depren O, Topallar M, Anarim E, et al. An intelligent intrusion detection system(IDS)for anomaly and misuse detection in computer networks[J]. Expert Systems with Applications, 2005, 29(4):713-722.
[5] Bengio Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-127.
[6] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[7] Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2006:153-160.
[8] Stolfo S J, Fan W, Lee W K, et al. Cost-based modeling for fraud and intrusion detection: results from the JAM project [EB/OL].(1999-10-28)[2011-06-27]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[9] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[10] Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8):1771-1800
[11] Larochelle H, Bengio Y, Louradour J, et al. Exploring strategies for training deep neural neural networks [J]. Journal of Machine Learning Research, 2009, 10(1):1-40.