[1] Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. Chapel Hill, NC, USA, 1994: 175-186.
[2] Walter F E, Battiston S, Schweitzer F. A model of a trust-based recommendation system on a social network[J]. Autonomous Agents and Multi-Agent Systems, 2008, 16(1): 57-74.
[3] Hsu S H, Wen M H, Lin H C, et al. AIMED—a personalized TV recommendation system[M]//Interactive TV: a shared experience. Berlin: Springer, 2007: 166-174.
[4] Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12): 61-70.
[5] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[6] Sahoo N, Singh P V, Mukhopadhyay T. A hidden Markov model for collaborative filtering[J/OL]. Management Information Systems Quarterly, 2012. http://ssrn.com/abstract=1700585.
[7] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China, 2001: 285-295.
[8] Ma H, King I, Lyu M R. Effective missing data prediction for collaborative filtering[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Amsterdam, Holland, 2007: 39-46.
[9] Kim H K, Kim J K, Ryu Y U. Personalized recommendation over a customer network for ubiquitous shopping[J]. IEEE Transactions on Services Computing, 2009, 2(2): 140-151.
[10] Choi K, Suh Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-Based Systems, 2013, 37(2): 146-153.
[11] Sun H F, Chen J L, Yu G, et al. JacUOD: a new similarity measurement for collaborative filtering[J]. Journal of Computer Science and Technology, 2012, 27(6): 1252-1260.
[12] Bobadilla J, Ortega F, Hernando A. A collaborative filtering similarity measure based on singularities[J]. Information Processing & Management, 2012, 48(2): 204-217.
[13] Kaleli C. An entropy-based neighbor selection approach for collaborative filtering[J]. Knowledge-Based Systems, 2014, 56(3): 273-280.
[14] Dos Santos T R L, Zárate L E. Categorical data clustering: what similarity measure to recommend?[J]. Expert Systems with Applications, 2015, 42(3): 1247-1260.
[15] Song S, Zhu H, Chen L. Probabilistic correlation-based similarity measure on text records[J]. Information Sciences, 2014, 289(5): 8-24.
[16] Jiang Y, Wang X, Zheng H T. A semantic similarity measure based on information distance for ontology alignment[J]. Information Sciences, 2014, 278(10): 76-87.
[17] Xue G R, Lin C, Yang Q, et al. Scalable collaborative filtering using cluster-based smoothing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore, 2005: 114-121.
[18] Roh T H, Oh K J, Han I. The collaborative filtering recommendation based on SOM cluster-indexing CBR[J]. Expert Systems with Applications, 2003, 25(3): 413-423.
[19] Honda K, Sugiura N, Ichihashi H, et al. Collaborative filtering using principal component analysis and fuzzy clustering[M]//Web intelligence: research and development. Berlin: Springer, 2001: 394-402.
[20] Bilge A, Polat H. A comparison of clustering-based privacy-preserving collaborative filtering schemes[J]. Applied Soft Computing, 2013, 13(5): 2478-2489.
[21] Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining & Knowledge Discovery, 1998, 2(3): 283-304.